早教吧 育儿知识 作业答案 考试题库 百科 知识分享

△ABC中,已知∠BAC=15°,AD平分∠BAC,过A作DA的垂线交直线BC于M,若BM=AC+BA.求∠ABC、∠ACB的度数.

题目详情
△ABC中,已知∠BAC=15°,AD平分∠BAC,过A作DA的垂线交直线BC于M,若BM=AC+BA.求∠ABC、∠ACB的度数.
▼优质解答
答案和解析
作业帮 分两种情况讨论计算:
(1)当过A作AD的垂线交BC延长于点M时,延长BA到C,使AC′=AC,连接C′M(如图),则BM=AB+AC=AB+AC′=BC′
∴∠C′=∠C′MB,
已知AD平分∠BAC,AM⊥AD,
∴AM平分∠CAC′,
∴△ACM≌△AC′M(AAS),
∴∠AC′M=∠ACM=∠C′MB,
在△BC′M中,∠B+∠C′+∠C′MB=180°,
∴∠B+∠ACM+∠ACM=180°,
∴∠B+2(∠BAC+∠B)=180°,解得∠B=50°,
∴∠ACB=180°-∠B-∠BAC=115°;
(2)当过A作AD的垂线交CB延长线于点M时,
延长BA到C′,使AC′=作业帮AC,连接CC′,C′M(如图),
则BM=AB+AC=AB+AC′=BC′,
∴∠MC′A=∠MBA,
∵∠MAD=90°,∴∠MAC=90°+
∠BAC
2
=97.5°,
又∵∠C′AC=180°-∠BAC=165°,
∴∠C′AM=360°-∠CAC′-∠MAC=97.5°=∠CAM,
∵AM=AM,
∴△AC′M≌△ACM(SAS),
∴∠AC′M=∠ACB,
在△MC′C中,∠C′MB+∠MCC′+∠MCC′=180°,
∴∠MC′A+∠MCA+∠ACC′+∠MC′A+∠AC′C=180°,
∴3∠ACM+∠CAB=180°,
∴∠ACB=
1
3
(180°-15°)=55°,
∴∠ABC=180°-∠ACB-∠BAC=110°,
综上得∠ABC=50°,∠ACB=115°或∠ABC=110°,∠ACB=55°.