早教吧作业答案频道 -->数学-->
已知函数,a∈R.(Ⅰ)若曲线y=f(x)在点P(1,f(1))处的切线垂直于直线y=x+2,求a的值;(Ⅱ)求函数f(x)在区间(0,e]上的最小值.
题目详情
已知函数,a∈R.
(Ⅰ)若曲线y=f(x)在点P(1,f(1))处的切线垂直于直线y=x+2,求a的值;
(Ⅱ)求函数f(x)在区间(0,e]上的最小值.
(Ⅰ)若曲线y=f(x)在点P(1,f(1))处的切线垂直于直线y=x+2,求a的值;
(Ⅱ)求函数f(x)在区间(0,e]上的最小值.
▼优质解答
答案和解析
(Ⅰ)先求出直线的斜率,因为曲线的切线垂直与直线,所以曲线的切线在该点的斜率与直线的斜率乘积为-1,即曲线在该点的导数与直线的斜率乘积为-1.
(Ⅱ)求出函数f(x)的导数,再讨论a的范围,根据导数求出函数的最值
【解析】
(Ⅰ)直线y=x+2的斜率为1.
函数y=f(x)的导数为,
则f′(1)=-+,所以a=1.(5分)
(Ⅱ)f′(x)=(ax-2)/x2,x∈(0,+∞).
①当a=0时,在区间(0,e]上f′(x)=-2/x2,此时f(x)在区间(0,e]上单调递减,
则f(x)在区间(0,e]上的最小值为F(e)=.
②当<0,即a<0时,在区间(0,e]上f′(x)<0,此时f(x)在区间(0,e]上单调递减,
则f(x)在区间(0,e]上的最小值为f(e)=+a.
③当0<<e,即a>时,
在区间上f′(x)<0,此时f(x)在区间上单调递减;
在区间上f′(x)>0,此时f(x)在区间上单调递增;
则f(x)在区间(0,e]上的最小值为f()=a+aln2.
④当,即时,
在区间(0,e]上f′(x)≤0,此时f(x)在区间(0,e]上为单调递减,
则f(x)在区间(0,e]上的最小值为f(e)=+a.
综上所述,当时,f(x)在区间(0,e]上的最小值为+a;
当a>时,f(x)在区间(0,e]上的最小值为a+aln.
(Ⅱ)求出函数f(x)的导数,再讨论a的范围,根据导数求出函数的最值
【解析】
(Ⅰ)直线y=x+2的斜率为1.
函数y=f(x)的导数为,
则f′(1)=-+,所以a=1.(5分)
(Ⅱ)f′(x)=(ax-2)/x2,x∈(0,+∞).
①当a=0时,在区间(0,e]上f′(x)=-2/x2,此时f(x)在区间(0,e]上单调递减,
则f(x)在区间(0,e]上的最小值为F(e)=.
②当<0,即a<0时,在区间(0,e]上f′(x)<0,此时f(x)在区间(0,e]上单调递减,
则f(x)在区间(0,e]上的最小值为f(e)=+a.
③当0<<e,即a>时,
在区间上f′(x)<0,此时f(x)在区间上单调递减;
在区间上f′(x)>0,此时f(x)在区间上单调递增;
则f(x)在区间(0,e]上的最小值为f()=a+aln2.
④当,即时,
在区间(0,e]上f′(x)≤0,此时f(x)在区间(0,e]上为单调递减,
则f(x)在区间(0,e]上的最小值为f(e)=+a.
综上所述,当时,f(x)在区间(0,e]上的最小值为+a;
当a>时,f(x)在区间(0,e]上的最小值为a+aln.
看了 已知函数,a∈R.(Ⅰ)若曲...的网友还看了以下:
已知函数F(X)在R上可导,其导函数为F(X),若F(X)满足:(x-1)[f'(x)-F(X)] 2020-06-12 …
已知函数f(x)=(e^x-a)^2;+(e^-x-a)^2;(a≥0)将f(x)表示为u=(e^ 2020-07-27 …
设函数f(x)=(mx+n)lnx.若曲线y=f(x)在点P(e,f(e))处的切线方程为y=2x 2020-07-30 …
高一数学问题1.对于函数f(x)=a-2/(除以的意思)2的x次方减2(a属于R)(1)探索函数f 2020-08-01 …
(2015•成都模拟)巳知函数f(x)=13ax2-bx-1nx,其中a,b∈R.(Ⅰ)当a=3, 2020-08-02 …
已知函数f(x)的导函数为f′(x),e为自然对数的底数,若函数f(x)满足xf′(x)+f(x) 2020-08-02 …
已知函数f(x)=e^x-ax-1(高中数学)谢谢了,已知函数f(x)=e^x-ax-1(a>0, 2020-08-02 …
已知函数f(x)=e^x-ax^2-bx-1,其中a,b属于R,e=2.71828...为自然对数 2020-08-02 …
已知e为自然对数的底数,函数f(x)=ex-e-x+ln(x2+1+x)+1,f′(x)为其导函数 2020-08-02 …
复合函数求导问题复合函数求导时,遇到一种函数通过不同形式两两组合可得到不同的结果时,应该如何解决例如 2020-12-13 …