早教吧作业答案频道 -->数学-->
已知函数,a∈R.(Ⅰ)若曲线y=f(x)在点P(1,f(1))处的切线垂直于直线y=x+2,求a的值;(Ⅱ)求函数f(x)在区间(0,e]上的最小值.
题目详情
已知函数,a∈R.
(Ⅰ)若曲线y=f(x)在点P(1,f(1))处的切线垂直于直线y=x+2,求a的值;
(Ⅱ)求函数f(x)在区间(0,e]上的最小值.
(Ⅰ)若曲线y=f(x)在点P(1,f(1))处的切线垂直于直线y=x+2,求a的值;
(Ⅱ)求函数f(x)在区间(0,e]上的最小值.
▼优质解答
答案和解析
(Ⅰ)先求出直线的斜率,因为曲线的切线垂直与直线,所以曲线的切线在该点的斜率与直线的斜率乘积为-1,即曲线在该点的导数与直线的斜率乘积为-1.
(Ⅱ)求出函数f(x)的导数,再讨论a的范围,根据导数求出函数的最值
【解析】
(Ⅰ)直线y=x+2的斜率为1.
函数y=f(x)的导数为,
则f′(1)=-+,所以a=1.(5分)
(Ⅱ)f′(x)=(ax-2)/x2,x∈(0,+∞).
①当a=0时,在区间(0,e]上f′(x)=-2/x2,此时f(x)在区间(0,e]上单调递减,
则f(x)在区间(0,e]上的最小值为F(e)=.
②当<0,即a<0时,在区间(0,e]上f′(x)<0,此时f(x)在区间(0,e]上单调递减,
则f(x)在区间(0,e]上的最小值为f(e)=+a.
③当0<<e,即a>时,
在区间上f′(x)<0,此时f(x)在区间上单调递减;
在区间上f′(x)>0,此时f(x)在区间上单调递增;
则f(x)在区间(0,e]上的最小值为f()=a+aln2.
④当,即时,
在区间(0,e]上f′(x)≤0,此时f(x)在区间(0,e]上为单调递减,
则f(x)在区间(0,e]上的最小值为f(e)=+a.
综上所述,当时,f(x)在区间(0,e]上的最小值为+a;
当a>时,f(x)在区间(0,e]上的最小值为a+aln.
(Ⅱ)求出函数f(x)的导数,再讨论a的范围,根据导数求出函数的最值
【解析】
(Ⅰ)直线y=x+2的斜率为1.
函数y=f(x)的导数为,
则f′(1)=-+,所以a=1.(5分)
(Ⅱ)f′(x)=(ax-2)/x2,x∈(0,+∞).
①当a=0时,在区间(0,e]上f′(x)=-2/x2,此时f(x)在区间(0,e]上单调递减,
则f(x)在区间(0,e]上的最小值为F(e)=.
②当<0,即a<0时,在区间(0,e]上f′(x)<0,此时f(x)在区间(0,e]上单调递减,
则f(x)在区间(0,e]上的最小值为f(e)=+a.
③当0<<e,即a>时,
在区间上f′(x)<0,此时f(x)在区间上单调递减;
在区间上f′(x)>0,此时f(x)在区间上单调递增;
则f(x)在区间(0,e]上的最小值为f()=a+aln2.
④当,即时,
在区间(0,e]上f′(x)≤0,此时f(x)在区间(0,e]上为单调递减,
则f(x)在区间(0,e]上的最小值为f(e)=+a.
综上所述,当时,f(x)在区间(0,e]上的最小值为+a;
当a>时,f(x)在区间(0,e]上的最小值为a+aln.
看了 已知函数,a∈R.(Ⅰ)若曲...的网友还看了以下:
1、已知函数f(x)=ax2+2ax+4(a>0),若x1<x2,x1+x2=0,则()a.f(x 2020-04-25 …
1、已知,映射A={1,2,3},B={4,5,6},f:A→B满足1是4的一个原象,这样的映射共 2020-05-23 …
f(x)是定义在R上的函数,且对任意实数x,y都有f(x+y)=f(x)+f(y)-1成立,当f( 2020-06-02 …
设在区间[0,1]上f''(x)>0,则f'(0)f'(1)和f(1)-f(0)的大小顺序是设在区 2020-06-08 …
已知fx是一次函数,且满足f[f(x)]=x1.已知f(x)是一次函数,且满足f[f(x)]=x, 2020-06-11 …
已知函数F(X)在R上可导,其导函数为F(X),若F(X)满足:(x-1)[f'(x)-F(X)] 2020-06-12 …
几道高中函数题(求详解)1.已知函数f(X)=ax²+bx+c满足f(1)=f(4),则()A.f 2020-07-05 …
问两道分段函数基础题,数学底子差啊……(20)在线1,已知f(x)=大括号x^2,X>0,e,X=0 2020-12-08 …
已知函数f(x)=ax^2+bx+c(c≠0),满足f(-1)=f(3)=0,且f(0)=6,求f( 2020-12-08 …
已知f(x)在R上是增函已知f(x)在R上是增函数,a,b∈R,且a+b≤0,则有[]A、f(a)+ 2020-12-08 …