早教吧作业答案频道 -->数学-->
如图,在正方形ABCD中,点E是AD边的中点,F是CD边上一点,且∠EBF=45°,则tan∠EFB的值为.
题目详情
如图,在正方形ABCD中,点E是AD边的中点,F是CD边上一点,且∠EBF=45°,则tan∠EFB的值为______.
▼优质解答
答案和解析
∵四边形ABCD为正方形,
∴BA=BC,∠ABC=90°,
把△BAE绕点B顺时针旋转90°得到△BCG,如图,
∴∠BCG=∠BAE=90°,∠EBG=∠ABC=90°,AE=CG,
∴点G、C、F共线,
∵∠EBF=45°,
∴∠GBF=45°,BG=BE,
在△BEF和△BGF中,
,
∴△BEF≌△BGF(SAS),
∴∠EFB=∠GFB,
设正方形的边长为2a,CF=x,则AE=DE=a,CG=AE=a,DF=2a-x,EF=FG=x+a,
在Rt△DEF中,∵DE2+DF2=EF2,
∴a2+(2a-x)2=(x+a)2,
解得x=
a,
在Rt△BCF中,
tan∠FBC=
=
=3,
∴tan∠EFB=3.
故答案为3.
∴BA=BC,∠ABC=90°,
把△BAE绕点B顺时针旋转90°得到△BCG,如图,
∴∠BCG=∠BAE=90°,∠EBG=∠ABC=90°,AE=CG,
∴点G、C、F共线,
∵∠EBF=45°,
∴∠GBF=45°,BG=BE,
在△BEF和△BGF中,
|
∴△BEF≌△BGF(SAS),
∴∠EFB=∠GFB,
设正方形的边长为2a,CF=x,则AE=DE=a,CG=AE=a,DF=2a-x,EF=FG=x+a,
在Rt△DEF中,∵DE2+DF2=EF2,
∴a2+(2a-x)2=(x+a)2,
解得x=
2 |
3 |
在Rt△BCF中,
tan∠FBC=
BC |
FC |
2a | ||
|
∴tan∠EFB=3.
故答案为3.
看了 如图,在正方形ABCD中,点...的网友还看了以下:
已知y=f(x)是奇函数,且满足f(x+2)+2f(-x)=0,当x∈(0,2)时,f(x)=lnx 2020-03-30 …
函数f(x)的定义域为[1,4]。求f(x^2)的定义域函数f(x)的定义域为[1,4],就是指自 2020-05-13 …
单调函数f(x)f在闭区间I上的值域也是I单调函数f(x)f在闭区间I上的值域也是I,则称f(x) 2020-06-08 …
高数难题判断正误1)f(x0)是f(x)的极大值f(x0)≥f(x),在x0某临域内(2)f(x0 2020-06-19 …
数学函数我很笨的大家有点耐心1.已知函数f(x)满足f(3x+1)=x+2,则f(-2)的值为2. 2020-06-26 …
f(x)是偶函数,f(x-1)是奇函数,若f(0.5)=9,则等于f(8.5)=因为f(x)偶函数 2020-07-14 …
X4+X2=1求X有几个值?(4是4次方,2是平方)急!急…… 2020-07-19 …
如果y=sin2x+acos2x的图象关于直线x=-π/8对称,那么a的值为,答案中的一句话:因为 2020-07-22 …
已知函数f(x)的定义域为R,对任意的x,y∈R,都有f(x+y)=f(x)*f(y)当x>0时, 2020-07-22 …
fx与f(g(x))的定义域问题f(x+2)的定义域(1,4),是指x取值在(1,4)还是x+2取 2020-07-25 …