早教吧作业答案频道 -->数学-->
如图,在三角形ABC中,角BAC=角BCA=44°,M为三角形ABC内一点,使角MCA=30°,角MCA=16°,求角BMC的度数
题目详情
如图,在三角形ABC中,角BAC=角BCA=44°,M为三角形ABC内一点,使角MCA=30°,角MCA=16°,求角BMC的度数
▼优质解答
答案和解析
过B作BD⊥AC,交AC于D,延长CM交BD于E,连接AE
∵在△ABC中∠BAC=∠BCA=44°
∴△ABC为等腰三角形,∠ABC=92°为顶角
∵BD⊥AC
∴BD垂直平分AC ∠CBD=∠DBA=46°
∵E为BD上的点
∴EC=EA ∠ECA=∠EAC=30°
∵∠ECA=30° ∠MAC=16° ∠BAC=44°
∠EAC=∠EAM+∠MAC=30°∠BAC=∠BAE+∠EAD
∴∠EAM=∠EAC-∠MAC=30°-16°=14° ∠BAE=∠BAC-∠EAC=44°-30°=14°
∴∠BAE=∠EAM=14°
∵∠EMA=∠ECA+∠MAC=30°+16°=46°
∴∠EMA=∠EBA=46°
∴∠MEA=180°-∠EMA-∠EAM=120°
∠BEA=180°-∠EBA-∠EAB=120°
∴△BEA≌△MEA(ASA)
∴BA=MA
∴△ABM为等腰三角形,∠BAM为顶角,且∠BAM=∠BAE+∠EAM=14°+14°=28°
∴∠BMA=76°
∵∠CMA=180°-∠MCA-∠MAC=180°-30°-16°=134°
∴∠BMC=360°-∠CMA-∠BMA=360°-134°-76°=150°
∵在△ABC中∠BAC=∠BCA=44°
∴△ABC为等腰三角形,∠ABC=92°为顶角
∵BD⊥AC
∴BD垂直平分AC ∠CBD=∠DBA=46°
∵E为BD上的点
∴EC=EA ∠ECA=∠EAC=30°
∵∠ECA=30° ∠MAC=16° ∠BAC=44°
∠EAC=∠EAM+∠MAC=30°∠BAC=∠BAE+∠EAD
∴∠EAM=∠EAC-∠MAC=30°-16°=14° ∠BAE=∠BAC-∠EAC=44°-30°=14°
∴∠BAE=∠EAM=14°
∵∠EMA=∠ECA+∠MAC=30°+16°=46°
∴∠EMA=∠EBA=46°
∴∠MEA=180°-∠EMA-∠EAM=120°
∠BEA=180°-∠EBA-∠EAB=120°
∴△BEA≌△MEA(ASA)
∴BA=MA
∴△ABM为等腰三角形,∠BAM为顶角,且∠BAM=∠BAE+∠EAM=14°+14°=28°
∴∠BMA=76°
∵∠CMA=180°-∠MCA-∠MAC=180°-30°-16°=134°
∴∠BMC=360°-∠CMA-∠BMA=360°-134°-76°=150°
看了 如图,在三角形ABC中,角B...的网友还看了以下:
1.a≠0,b≠0,则a/|a|+b/|b|的不同取值的个数为()A.3B.2C.1D.02.若|x 2020-03-31 …
说理由下列各式(1)±√81=±9(2)-√9分之4=-2/3(3)√(-5)的平方=5(4)√( 2020-04-11 …
基本不等式超费解130已知a>b>0,求a2+1/(a*b)+1/[a*(a-b)]的最小值.a2 2020-05-13 …
设集合A={1,a,b},B={a,a^2,ab}且A=B,求实数A,B的值因为集合需要满足互异性 2020-05-15 …
因式分解有很多方法,请仔细阅读一道因式分解题目的两种不同的分解方法:因式分解:a^3+3a^2-4 2020-05-23 …
对于集合A,B,我们把集合{(a,b)|a∈A,b∈B}记作A×B.例如:A={1,2},B={3 2020-06-11 …
假设集合A满足以下条件:诺a∈A,a不等于1,则1-a分之1属于A若a属于A,则1-a分之一属于A 2020-07-03 …
对于集合A,B,我们把集合{(a,b)|a∈A,b∈B}记作A×B.例如:A={1,2},B={3 2020-07-30 …
高一数学必修五基本不等式设a>0,b>0,则下列不等式成立的是A.a+b+1/根号(ab)≥2根号 2020-08-03 …
a^4+b^4+c^4+d^4=4abcd(分解因式)a^4+b^4+c^4+d^4=4abcd把这 2020-10-31 …