早教吧作业答案频道 -->其他-->
已知:如图,在△ABC中,∠ACB=90°,AC=BC,直线l经过顶点C,过A,B两点分别作l的垂线AE和BF,且E,F为垂足.(1)求证:EF=AE+BF;(2)取AB的中点M,连接ME,MF.试判断△MEF的形状,并说明理
题目详情
已知:如图,在△ABC中,∠ACB=90°,AC=BC,直线l经过顶点C,过A,B两点分别作l的垂线AE和BF,且E,F为垂足.
(1)求证:EF=AE+BF;
(2)取AB的中点M,连接ME,MF.试判断△MEF的形状,并说明理由.
(1)求证:EF=AE+BF;
(2)取AB的中点M,连接ME,MF.试判断△MEF的形状,并说明理由.
▼优质解答
答案和解析
(1)证明:∵AE⊥EF,BF⊥EF,∠ACB=90°
∴∠AEC=∠BFC=∠ACB=90°,
∴∠EAC+∠ECA=90°,∠ECA+∠FCB=90°,
∴∠EAC=∠FCB,
在△EAC和△FCB中
∴△EAC≌△FCB(AAS),
∴CE=BF,AE=CF,
∴EF=CE+CF=AE+BF,
即EF=AE+BF.
(2)△MEF为等腰直角三角形,
△MEF为等腰直角三角形
理由是:连接CM,
∵△ABC是等腰直角三角形,AM=BM,
∴CM⊥AB,∠ACM=∠MCB=45°
∴CM=AM=BM=
AB
∵∠EAM=∠EAC+∠CAM=∠EAC+45°
∵∠MCF=∠BCF+∠MCB=∠BCF+45°
∵∠EAC=∠BCF,
∴∠MAE=∠MCF,
在△MAE和△MCF中
∴△MAE≌△MCF(SAS)
∴EM=MF,∠CMF=∠AME,
∵∠AMC=90°,
∵∠AMC=∠CME+∠AME=∠CME+CMF=∠EMF,
∴∠AME=∠EMF=90°,
∴△MEF是等腰直角三角形.
∴∠AEC=∠BFC=∠ACB=90°,
∴∠EAC+∠ECA=90°,∠ECA+∠FCB=90°,
∴∠EAC=∠FCB,
在△EAC和△FCB中
|
∴△EAC≌△FCB(AAS),
∴CE=BF,AE=CF,
∴EF=CE+CF=AE+BF,
即EF=AE+BF.
(2)△MEF为等腰直角三角形,
△MEF为等腰直角三角形
理由是:连接CM,
∵△ABC是等腰直角三角形,AM=BM,
∴CM⊥AB,∠ACM=∠MCB=45°
∴CM=AM=BM=
1 |
2 |
∵∠EAM=∠EAC+∠CAM=∠EAC+45°
∵∠MCF=∠BCF+∠MCB=∠BCF+45°
∵∠EAC=∠BCF,
∴∠MAE=∠MCF,
在△MAE和△MCF中
|
∴△MAE≌△MCF(SAS)
∴EM=MF,∠CMF=∠AME,
∵∠AMC=90°,
∵∠AMC=∠CME+∠AME=∠CME+CMF=∠EMF,
∴∠AME=∠EMF=90°,
∴△MEF是等腰直角三角形.
看了 已知:如图,在△ABC中,∠...的网友还看了以下:
如图1,在直线l同侧有A,E两点(1)通过画图,在直线l上找到一点P,使得AP+EP的值最小;(2 2020-04-07 …
有a,b,c,d4个带权叶子节点,其权分别是9,4,5,2,构造一个哈夫曼树,并画出构造过程.像这 2020-05-13 …
中个9,三个9和4个9的概率是多少?0-9一起10个数字,每个数字都有对应的乒乓球,且每个数为4个 2020-05-20 …
在一个平面上,机器人到与点C(5,—3)的距离为9的地方绕C点顺时针而行,在行进过程中保持与点C的 2020-06-20 …
A,B,C三件衬衫的总价格为520元A、B、C三件衬衫的总价格为520元,若分别按9.5折、9折、 2020-06-22 …
过点P(﹣2,﹣1)作圆C:(x﹣4)2+(y﹣2)2=9的两条切线,切点分别为A,B,(1)求直 2020-07-12 …
如图所示,在平面坐标系内,点A和点C的坐标分别为(4,9)、(0,3),过点A作AB在平面直角坐标 2020-07-31 …
在郴州市中小学“创园林城市,创卫生城市,创文明城市”演讲比赛中,5位评委给靓靓同学的评分如下:9.0 2020-11-12 …
今年2月27日,十二届全国人大常委表决通过了两个决定,分别将9月3日确定为中国人民抗日战争纪念日,将 2020-11-29 …
成都市出租车的收费标准是:起步价9元,当路程超过2km时,每超过1km加收1.4元.若出租车行驶ak 2021-01-01 …