早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设函数y=f(x)在点x0处可微,则下面表达式不正确的是()A.limx→x0f(x)=f(x0)B.dy|x=x0=f′(x0)dxC.f(x)=f(x0)+f′(x0)(x-x0)D.dy-△y=o(△x)(△x→0)

题目详情
设函数y=f(x)在点x0处可微,则下面表达式不正确的是(  )

A.
lim
x→x 0
f(x)=f(x0
B.dy|x= x0=f′(x0)dx
C.f(x)=f(x0)+f′(x0)(x-x0
D.dy-△y=o(△x)(△x→0)
▼优质解答
答案和解析
A正确:
因为函数f(x)可微是函数f(x)连续的必要条件,
故y=f(x)在点x0处可微⇒y=f(x)在点x0处连续,
再由函数连续的充要条件可得:
lim
x→x0
f(x)=f(x).
B正确:
因为y=f(x)在点x0处可微,故由微分的定义可得,
dy|x=x0=f′(x0)dx.
选项D正确:
因为y=f(x)在点x0处可微,
故由微分的定义可得,∃A∈R,使得△y=Adx+o(△x),
且dy=Adx,
从而,dy-△y=o(△x).
选项C错误:
如果因为y=f(x)在点x0处可微,则
f(x)≈f(x0)+f′(x0)(x-x0),
只是近似相等,而不是“=”,
正确的描述应该是:
f(x)=f(x0)+f′(x0)(x-x0)+o(△x).
综上,不正确的选项为:C.
故选:C.