早教吧作业答案频道 -->数学-->
在△ABC中,∠A=90°,点D在线段BC上,∠EDB=12∠C,BE⊥DE,垂足为点E,DE与AB相交于点F.当AB=AC时(如图所示).(1)∠EBF=.(2)探究线段BE与FD的数量关系,并加以证明.
题目详情
在△ABC中,∠A=90°,点D在线段BC上,∠EDB=
∠C,BE⊥DE,垂足为点E,DE与AB相交于点F.当AB=AC时(如图所示).
(1)∠EBF=______.
(2)探究线段BE与FD的数量关系,并加以证明.
1 |
2 |
(1)∠EBF=______.
(2)探究线段BE与FD的数量关系,并加以证明.
▼优质解答
答案和解析
(1)作DH⊥AB于H,如图,
∵∠A=90°,AB=AC,
∴∠ABC=∠C=45°,
∴∠EDB=
∠C=22.5°,
∵BE⊥DE,
∴∠E=90°,
∴∠EBD=90°-22.5°=67.5°,
∴∠EBF=∠EBD-∠ABC=22.5°.
(2)BE=
FD.理由如下
BE与DH的延长线交于G点,如图,
∵DH∥AC,
∴∠BDH=∠C=45°,
∴△HBD为等腰直角三角形
∴HB=HD,
而∠EBF=22.5°,
∵∠EDB=
∠C=22.5°,
∴DE平分∠BDG,
而DE⊥BG,
∴BE=GE,即BE=
BG,
∵∠DFH+∠FDH=∠G+∠FDH=90°,
∴∠DFH=∠G,
∵∠GBH=90°-∠G,∠FDH=90°-∠G,
∴∠GBH=∠FDH
在△BGH和△DFH中,
,
∴△BGH≌△DFH(AAS),
∴BG=DF,
∴BE=
FD.
故答案为22.5°.
∵∠A=90°,AB=AC,
∴∠ABC=∠C=45°,
∴∠EDB=
1 |
2 |
∵BE⊥DE,
∴∠E=90°,
∴∠EBD=90°-22.5°=67.5°,
∴∠EBF=∠EBD-∠ABC=22.5°.
(2)BE=
1 |
2 |
BE与DH的延长线交于G点,如图,
∵DH∥AC,
∴∠BDH=∠C=45°,
∴△HBD为等腰直角三角形
∴HB=HD,
而∠EBF=22.5°,
∵∠EDB=
1 |
2 |
∴DE平分∠BDG,
而DE⊥BG,
∴BE=GE,即BE=
1 |
2 |
∵∠DFH+∠FDH=∠G+∠FDH=90°,
∴∠DFH=∠G,
∵∠GBH=90°-∠G,∠FDH=90°-∠G,
∴∠GBH=∠FDH
在△BGH和△DFH中,
|
∴△BGH≌△DFH(AAS),
∴BG=DF,
∴BE=
1 |
2 |
故答案为22.5°.
看了 在△ABC中,∠A=90°,...的网友还看了以下:
已知a/b=c/d=e/f=2,当b+d≠0时,a+c/b+d=;当b+d+f≠0时,a+c+e/ 2020-05-14 …
高一数学题在正方体ABCD—A'B'C'D'中,E在A'B上,F在B'D'上,且BE=B'F,求证 2020-05-16 …
设栈S的初始状态为空,元素a,b,c,d,e,f依次入栈S,出栈的序列为b,d,f,e,c,a…… 2020-05-17 …
已知a,b,c,d,e,f六个数.如果a/b=c/d=e/f(b+d+f≠0),那么a+c+e/b 2020-06-02 …
若a/b=c/d=e/f,则下列各式中正确的是().A.e/f=ac/bdB.e/f=(a+c+e 2020-06-06 …
已知集合A={正方体},B={长方体},C={正四棱柱},D={直四棱柱},E={棱柱},F={直 2020-06-27 …
学数据结构遇到的问题,有6个元素a,b,c,d,e,f依次入栈,下列出栈序列中哪个是不可能的?A) 2020-06-28 …
设函数f(x)在x=0处连续,且limh→0f(h2)h2=1,则()A.f(0)=0且f−′(0 2020-07-20 …
求证:(1)b=d,f=b^2;(2)求a,b,c,d,e,f,g的值(题目如下)设a、b、c、d 2020-07-27 …
急一道数学题已知a/b=c/d=e/f=m/n(b+d+f+...+n≠0)(1)试说明:a+c+e 2020-11-01 …