早教吧作业答案频道 -->数学-->
设函数f(x)在(0,1)上连续,且满足f(x)=x+2∫(0,1)f(t)dt,求f(x)更简洁的表达式
题目详情
设函数f(x)在(0,1)上连续,且满足f(x)=x+2 ∫(0,1)f(t)dt,求f(x)更简洁的表达式
▼优质解答
答案和解析
令a=∫(0,1)f(t)dt, 它为常数
故f(x)=x+2a
再代入上述积分:
a=∫(0,1)(t+2a)dt=(t^2/2+2at)|(0,1)=1/2+2a
解得:a=-1/2
所以f(x)=x-1
故f(x)=x+2a
再代入上述积分:
a=∫(0,1)(t+2a)dt=(t^2/2+2at)|(0,1)=1/2+2a
解得:a=-1/2
所以f(x)=x-1
看了 设函数f(x)在(0,1)上...的网友还看了以下:
已知函数fx的定义域为R,对任意实数x,y满足f(x+y)=f(x)f(y)且f(x)>0,f(2 2020-05-13 …
定义在R上的函数f(x),对任意x,y∈R,有f(x+y)+f(x-y)=2f(x)*f(y),且 2020-05-13 …
f(x)+f(y)=2f[(x+y)/2]f[(x-y)/2],f(0)不等于,且存在非零常数c, 2020-05-14 …
如何理解复合函数F(x)=f(u(x)),如果u(x)为偶函数,则F(x)为偶函数;如果u(x)为 2020-05-16 …
若函数f(x)对于任意实数x都有f(x)=f(x-a)+f(x+a)(常数a为正整数),则f(x) 2020-05-16 …
f(x)=e^x-kx,设函数F(x)=f(x)+f(-x),求证F(1)F(2)……F(n)>[ 2020-05-21 …
求证几个函数对称定理!50待加.1.函数f(x)定义域为R.求证y=f(x-m)与y=f(m-x) 2020-06-06 …
f(x)是R上的函数,若f(x+1)和f(x-1)都是奇函数,则下列判断正确的是1、f(x)是偶函 2020-06-08 …
已知函数f(x)对任意实数x,y均有f(x+y)+2=f(x)+f(y),且当x>0时,f(x)> 2020-06-12 …
已知函数F(X)在R上可导,其导函数为F(X),若F(X)满足:(x-1)[f'(x)-F(X)] 2020-06-12 …