早教吧作业答案频道 -->数学-->
贵求各种拆项公式的推导请帮我把下列各种公式推导下,让我知道他们的由来谢谢了(1)1/n(n+1)=1/n-1/(n+1)(2)1/(2n-1)(2n+1)=1/2[1/(2n-1)-1/(2n+1)](3)1/n(n+1)(n+2)=1/2[1/n(n+1)-1/(n+1)(n+2)](4)1/(√a+√b)=[
题目详情
贵求各种拆项公式的推导
请帮我把下列各种公式推导下,让我知道他们的由来谢谢了(1)1/n(n+1)=1/n-1/(n+1) (2)1/(2n-1)(2n+1)=1/2[1/(2n-1)-1/(2n+1)](3)1/n(n+1)(n+2)=1/2[1/n(n+1)-1/(n+1)(n+2)](4)1/(√a+√b)=[1/(a-b)](√a-√b)
请帮我把下列各种公式推导下,让我知道他们的由来谢谢了(1)1/n(n+1)=1/n-1/(n+1) (2)1/(2n-1)(2n+1)=1/2[1/(2n-1)-1/(2n+1)](3)1/n(n+1)(n+2)=1/2[1/n(n+1)-1/(n+1)(n+2)](4)1/(√a+√b)=[1/(a-b)](√a-√b)
▼优质解答
答案和解析
1/n-1/(n+1)分母通分.分母为n(n+1),分子为n+1-n=1,合起来 =1/n(n+1).所以1/n-1/(n+1)=1/n(n+1)
这个和上面的一样,1/2[1/(2n-1)-1/(2n+1)]分母通分.分母为(2n-1)(2n+1),分子2n+1-2n+1=2,合起来2/(2n-1)(2n+1),再乘以一个1/2,得到1/(2n-1)(2n+1)
第三个还是一样的就不写了
第四个,关键在于(a-b)=(√a-√b)(√a+√b)
[1/(a-b)](√a-√b)=(√a-√b)/[(√a-√b)(√a+√b)],消去(√a-√b)剩下1/(√a+√b)
这个和上面的一样,1/2[1/(2n-1)-1/(2n+1)]分母通分.分母为(2n-1)(2n+1),分子2n+1-2n+1=2,合起来2/(2n-1)(2n+1),再乘以一个1/2,得到1/(2n-1)(2n+1)
第三个还是一样的就不写了
第四个,关键在于(a-b)=(√a-√b)(√a+√b)
[1/(a-b)](√a-√b)=(√a-√b)/[(√a-√b)(√a+√b)],消去(√a-√b)剩下1/(√a+√b)
看了 贵求各种拆项公式的推导请帮我...的网友还看了以下:
设f(x)在[a,b]上可微,0小于a小于b.证明:在(a,b)内至少存在一点n.使得f(b)-f 2020-04-26 …
将一带负电的物体M靠近一不带电的导体N,在N的左端感应出正电荷,右端感应出负电荷.若将导体N的左端 2020-05-15 …
已知数列{an}满足a1=1,an+an+1=(1/4)n(n∈N*),sn=a1+4a2+4^2 2020-07-16 …
已知数列{an}满足a1=1,an+a(n+1)=(1/4)^n(n∈N*),Tn=a1+a24+ 2020-07-23 …
关于乘方的问题计算1.a·a的m+1-a²·a的m次方(a·a^m+1-a^2·a^m)2.3b的 2020-07-30 …
“n阶可导”和“n阶连续可导”的区别是不是“n阶可导”是指存在n阶导数,但是第n阶导数连不连续续不知 2020-11-02 …
lingo求救急MODEL:SETS:ID/1..4/;NO(ID):a,b,n;endsetsma 2020-12-19 …
已知:n=1a^2-b^2=(a-b)(a+b);a^3-b^3=(a-b)(a^2+ab+b^2) 2020-12-23 …
1.设f(x)=3的|a-x|次方,求f'(x)为什么x=a时导数不存在?2.求y=x^2•2^x• 2021-02-20 …
设f(x)=3的|a-x|次方,求f'(x)为什么x=a时导数不存在?求y=x^2•2^x•lnx的 2021-02-20 …