早教吧 育儿知识 作业答案 考试题库 百科 知识分享

对于给定的正整数n和正数R,若等差数列a1,a2,a3,…满足a21+a22n+1≤R,则S=a2n+1+a2n+2+a2n+3+…+a4n+1的最大值为

题目详情
对于给定的正整数n和正数R,若等差数列a1,a2,a3,…满足a
 
2
1
+
a
2
2n+1
≤R,则S=a2n+1+a2n+2+a2n+3+…+a4n+1的最大值为___.
▼优质解答
答案和解析
数列{an}等差数列,
∴a2n+1+a4n+1=a2n+2+a4n=…2a3n+1
∴S=(2n+1)a3n+1
∵a
 
2
1
+
a
2
2n+1
=(a3n+1-3nd)2+(a3n+1-nd)2≤R,
化简得:2
a
2
3n+1
-8dna3n+1+10n2d2-R≤0,
关于d的二次方程,10n2d2-8dna3n+1+2
a
2
3n+1
-R≤0,有解,
∴△=(-8na3n+1)2-40n22
a
2
3n+1
-R)≥0,
化简得:8
a
2
3n+1
-10
a
2
3n+1
+5R≥0,
a
2
3n+1
5R
2

-
10R
2
≤a3n+1≤
10R
2

S≤
(2n+1)
10R
2

故答案为:
(2n+1)
10R
2