早教吧 育儿知识 作业答案 考试题库 百科 知识分享

n(n+1)(n+2)最大公约数(n+1)(n+2)(n+3)(n+4)+1=分解公因式要理由和步骤=(n^2+5n+4)^2+2(n^2+5n+4)+1=(n^2+5n+5+1)^2这是不是有点错误==没学平方和,不能怪偶==还有N是变数N是正整数==怎么会是一个数。=[

题目详情









▼优质解答
答案和解析
第一个:n从1开始,n、n+1、n+2中必有一个偶数,所以最大公约数为2(感觉是这样,不知和不和要求?)
当n=2k-1(k=1,2,3,...)时,n(n+1)(n+2)=(2k-1)(2k)(2k+1)=2(k)(2k-1)(2k+1)
当k变化时,最大公约数为2;当n=2k时,n(n+1)(n+2)=2k(2k+1)(2k+2)=4k(2k+1)(k+1),公约数为2、4.综合两者,最大公约数为2.(晕,我把当n变化时所有的n(n+1)(n+2)组成的一群数的公约数求了,楼主的这题费解啊.)
第二题:
(n+1)(n+2)(n+3)(n+4)+1
=(n+1)(n+4)(n+2)(n+3)+1
=(n^2+5n+4)(n^2+5n+4+2)+1
=(n^2+5n+4)^2+2(n^2+5n+4)+1
=(n^2+5n+4+1)^2(平方和公式啊.)
=[(n-(-5+5^1/2)/2)(n-(-5-5^1/2)/2)]^2
最后的看不懂的话没关系.
是用求根公式得出来的.
平方和公式:(a+b)^2=a^2+2ab+b^2