早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知数列{an}的各项均为正数,数列{bn},{cn}满足bn=an+2an,cn=anan+12.(1)若数列{an}为等比数列,求证:数列{cn}为等比数列;(2)若数列{cn}为等比数列,且bn+1≥bn,求证:数列{an}为等比数列

题目详情
已知数列{an}的各项均为正数,数列{bn},{cn}满足bn=
an+2
an
,cn=anan+12
(1)若数列{an}为等比数列,求证:数列{cn}为等比数列;
(2)若数列{cn}为等比数列,且bn+1≥bn,求证:数列{an}为等比数列.
▼优质解答
答案和解析
证明:(1)因为数列{an}为等比数列,所以
an+1
an
=q(q为常数),
又因为cn=anan+12
所以
cn+1
cn
=
an+1•
a
2
n+2
an
•a
2
n+1
=q3为常数,所以数列{cn}为等比数列;
(2)因为数列{cn}是等比数列,所以
cn+1
cn
=q(q为常数),
所以
cn+1
cn
=
an+1•
a
2
n+2
an
•a
2
n+1
=
a
2
n+2
an
•a
 
n+1
=q(q为常数),
a
2
n+2
an
•a
 
n+1
=
a
2
n+4
an+2
•a
 
n+3

所以
a
2
n+4
a
2
n+2
=
an+2•an+3
an
•a
 
n+1

∵bn=
an+2
an

故bn+22=bn+1•bn
因为bn+1≥bn,所以bn+2≥bn+1,则bn+22≥bn+12≥bn+1•bn
所以bn+2=bn+1=bn
an+3
an+1
=
an+2
an
,即an+3=an+1
an+2
an

因为数列{cn}是等比数列,所以
cn+1
cn
=
cn+2
cn+1
,即
a
2
n+2
an
•a
 
n+1
=
a
2
n+3
an+1
•a
 
n+2

把an+3=an+1
an+2
an
代入化简得an+12=an•an+2
所以数列{an}为等比数列.