早教吧作业答案频道 -->数学-->
如图,PA垂直于⊙O所在平面ABC,AB为⊙O的直径,PA=AB=2,,C是弧AB的中点.(1)证明:BC⊥平面PAC;(2)证明:CF⊥BP;(3)求四棱锥C-AOFP的体积.
题目详情
如图,PA垂直于⊙O所在平面ABC,AB为⊙O的直径,PA=AB=2,,C是弧AB的中点.
(1)证明:BC⊥平面PAC;
(2)证明:CF⊥BP;
(3)求四棱锥C-AOFP的体积.
(1)证明:BC⊥平面PAC;
(2)证明:CF⊥BP;
(3)求四棱锥C-AOFP的体积.
▼优质解答
答案和解析
(1)由PA⊥平面ABC,得BC⊥PA,根据圆的性质得BC⊥AC,结合线面垂直的判定定理,得到BC⊥平面PAC.
(2)根据C是半圆弧AB的中点,证出等腰三角形△ABC中OC⊥AB,结合平面PAB⊥平面ABC,得到BP⊥OC.设BP的中点为E,连结AE,利用三角形中位线定理,可得OF∥AE,由等腰三角形“三线合一”证出AE⊥BP,从而得到BP⊥OF,由线面垂直判定定理得到BP⊥平面CFO,从而得到CF⊥BP.
(3)根据题意,CO是三棱锥C-BFO的高且CO=1,算出△BOF的面积再结合锥体体积公式,得到,同样的方法算出三棱锥P-ABC的体积,从而得到四棱锥C-AOFP的体积.
【解析】
(1)∵PA⊥平面ABC,BC⊂平面ABC,
∴BC⊥PA.(1分)
∵∠ACB是直径所对的圆周角,
∴∠ACB=90°,即BC⊥AC.(2分)
又∵PA∩AC=A,∴BC⊥平面PAC.(3分)
(2)∵PA⊥平面ABC,OC⊂平面ABC,
∴OC⊥PA.(4分)
∵C是半圆弧AB的中点,∴△ABC是等腰三角形,AC=BC,
又∵O是AB的中点,∴OC⊥AB.(5分)
∵PA∩AB=A,PA、AB⊂平面PAB,
∴OC⊥平面PAB,
结合PB⊂平面PAB,可得BP⊥OC.(6分)
设BP的中点为E,连结AE,
则OF是△AEB的中位线,可得OF∥AE,
∵PA=AB,E为BP中点,∴AE⊥BP,可得BP⊥OF.(7分)
∵OC∩OF=O,OC、OF⊂平面CFO,∴BP⊥平面CFO.
又∵CF⊂平面CFO,∴CF⊥BP.(8分)
(3)由(2)知OC⊥平面PAB,
∴CO是三棱锥C-BFO的高,且CO=1.(9分)
又∵,
(10分)
∴(11分)
又∵三棱锥P-ABC的体积(12分)
∴四棱锥C-AOFP的体积(13分)
(2)根据C是半圆弧AB的中点,证出等腰三角形△ABC中OC⊥AB,结合平面PAB⊥平面ABC,得到BP⊥OC.设BP的中点为E,连结AE,利用三角形中位线定理,可得OF∥AE,由等腰三角形“三线合一”证出AE⊥BP,从而得到BP⊥OF,由线面垂直判定定理得到BP⊥平面CFO,从而得到CF⊥BP.
(3)根据题意,CO是三棱锥C-BFO的高且CO=1,算出△BOF的面积再结合锥体体积公式,得到,同样的方法算出三棱锥P-ABC的体积,从而得到四棱锥C-AOFP的体积.
【解析】
(1)∵PA⊥平面ABC,BC⊂平面ABC,
∴BC⊥PA.(1分)
∵∠ACB是直径所对的圆周角,
∴∠ACB=90°,即BC⊥AC.(2分)
又∵PA∩AC=A,∴BC⊥平面PAC.(3分)
(2)∵PA⊥平面ABC,OC⊂平面ABC,
∴OC⊥PA.(4分)
∵C是半圆弧AB的中点,∴△ABC是等腰三角形,AC=BC,
又∵O是AB的中点,∴OC⊥AB.(5分)
∵PA∩AB=A,PA、AB⊂平面PAB,
∴OC⊥平面PAB,
结合PB⊂平面PAB,可得BP⊥OC.(6分)
设BP的中点为E,连结AE,
则OF是△AEB的中位线,可得OF∥AE,
∵PA=AB,E为BP中点,∴AE⊥BP,可得BP⊥OF.(7分)
∵OC∩OF=O,OC、OF⊂平面CFO,∴BP⊥平面CFO.
又∵CF⊂平面CFO,∴CF⊥BP.(8分)
(3)由(2)知OC⊥平面PAB,
∴CO是三棱锥C-BFO的高,且CO=1.(9分)
又∵,
(10分)
∴(11分)
又∵三棱锥P-ABC的体积(12分)
∴四棱锥C-AOFP的体积(13分)
看了 如图,PA垂直于⊙O所在平面...的网友还看了以下:
如图所示,PA⊥平面ABC,点C在以AB为直径的⊙O上,∠CBA=30°,PA=AB=2,点E为线 2020-04-26 …
在共点O三条不共面直线a,b,c上,在点O两侧分别取点A和A',B和B',C和C',且AO=A'O 2020-05-13 …
下面不属于身份认证方法的是()A、口令认证B、智能卡认证C、姓名认证D、指纹认证 2020-05-26 …
保证的方式可以分为()。A、口头保证B、书面保证C、一般保证D、连带责任保证 2020-05-26 …
完成下面的证明,用反证法证明“两条直线被第三条直线所截,如果同位角不相等,那么这两条直线不平行”. 2020-07-23 …
阅读下面的证明过程,指出其错误.已知△ABC.求证:∠A+∠B+∠C=180度.证明:过A作DE∥ 2020-07-23 …
阅读下面的证明过程,指出其错误.已知△ABC.求证:∠A+∠B+∠C=180度.证明:过A作DE∥ 2020-07-29 …
用反证法证明:已知:一点A和平面α求证:经过点A只能有一条直线和平面α垂直.如果是这样的证明方法: 2020-08-01 …
研究人类进化的最直接最有力的证据是()A.化石证据B.胚胎发育的证据C.解剖学证据D.结构方面的证据 2021-01-04 …
生物进化的主要证据是()A.化石证据B.解剖证据C.胚胎发育上的证据D.结构方面的证据 2021-01-04 …