早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设x=根号下(n+1)-根号n/根号下(n+1)+根号n,y=根号下(n+1)+根号n/根号下(n+1)-根号n,(n为自然数),若19x的平方+140xy+19y的平方=2002,求n的值

题目详情
设x=根号下(n+1)-根号n/根号下(n+1)+根号n,y=根号下(n+1)+根号n/根号下(n
+1)-根号n,(n为自然数),若19x的平方+140xy+19y的平方=2002,求n的值
▼优质解答
答案和解析
x=(√n+1 -√n)/(√n+1 +√n) 分母有理化x=2n+1+2√(n^2+n)
y=(√n+1 +√n)/(√n+1 -√n) 分母有理化y=2n+1-2√(n^2+n)
10x^2+10y^2-12xy+80=2008
10(x-y)^2+8xy+80=2008
x,y带入其中10(x-y)^2=10(2n+1+2√(n^2+n)-(2n+1-2√(n^2+n))=160n^2+160n
x,y带入其中8xy=8(2n+1+2√(n^2+n))(2n+1-2√(n^2+n))由平方差公式
=8(2n+1)^2-8(2√(n^2+n))^2=8
160n^2+160n+8+80=2008
n^2+n-12=0
n1=3 n2=-4