早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,在平面直角坐标系中,点C(-3,0),点A、B分别在x轴、y轴的正半轴上,且满足(OB-3)2+OA-1=0.(1)求点A、B的坐标;(2)若点P从点C出发,以每秒1个单位的速度沿射线CB运动,连接AP

题目详情
如图,在平面直角坐标系中,点C(-3,0),点A、B分别在x轴、y轴的正半轴上,且满足(OB-
3
2+
OA-1
=0.
(1)求点A、B的坐标;
(2)若点P从点C出发,以每秒1个单位的速度沿射线CB运动,连接AP.设△ABP的面积为S,点P的运动时间为t秒,求S与t的函数关系式,并写出自变量t的取值范围.
(3)在(2)的条件下,是否存在点P,使以点A、B、P为顶点的三角形与△AOB相似?若存在,直接写出点P坐标;若不存在,说明理由.
▼优质解答
答案和解析
(1)∵(OB-
3
2+
OA-1
=0,
∴OB2-3=0,OA-1=0.
∴OB=
3
,OA=1,
点A,点B分别在x轴,y轴的正半轴上,
∴A(1,0),B(0,
3
);

(2)由(1),得AC=4,
由关勾股定理得:
AB=
2+(
3
2
=2,BC=
2+(
3
2
=2
3

∴AB2+BC2=22+(2
3
2=16,
∵AC2=16,
∴AB2+BC2=AC2=16,
∴△ABC为直角三角形,∠ABC=90°.(4分)
设CP=t,过P作PQ⊥CA于Q,连接PA,
由△CPQ∽△CBO,
∴OB:BC=PQ:PC=1:2,
PQ=
作业帮用户 2017-10-13
问题解析
(1)根据条件(OB-
3
2+
OA-1
=0,可求得OB=
3
,OA=1,根据图象可知A(1,0),B(0,
3
);
(2)在直角三角形中的勾股定理和动点运动的时间和速度分别把相关的线段表示出来,设CP=t,过P作PQ⊥CA于Q,由△CPQ∽△CBO,易得PQ=
t
2
,S=S△ABC-S△APC=2
3
-t;
(3)由于∠ABP=∠AOB=90°,所以分两种情况讨论:①△ABP∽△AOB;②△ABP∽△BOA.可知满足条件的有四个.
名师点评
本题考点:
相似三角形的判定与性质;非负数的性质:偶次方;非负数的性质:算术平方根.
考点点评:
本题考查了非负数的性质,相似三角形的判定,勾股定理和直角三角形的判定等知识点.利用非负数的性质求算出线段的长度是解题的关键之一.要会熟练地运用这些性质解题.
我是二维码 扫描下载二维码
看了 如图,在平面直角坐标系中,点...的网友还看了以下: