早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2013•兰州)如图1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB为边,在△OAB外作等边△OBC,D是OB的中点,连接AD并延长交OC于E.(1)求证:四边形ABCE是平行四边形;(2)如图2,将图1中的

题目详情
(2013•兰州)如图1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB为边,在△OAB外作等边△OBC,D是OB的中点,连接AD并延长交OC于E.
(1)求证:四边形ABCE是平行四边形;
(2)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.
▼优质解答
答案和解析
(1)证明:∵Rt△OAB中,D为OB的中点,
∴AD=
1
2
OB,OD=BD=
1
2
OB
∴DO=DA,
∴∠DAO=∠DOA=30°,∠EOA=90°,
∴∠AEO=60°,
又∵△OBC为等边三角形,
∴∠BCO=∠AEO=60°,
∴BC∥AE,
∵∠BAO=∠COA=90°,
∴CO∥AB,
∴四边形ABCE是平行四边形;

(2)设OG=x,由折叠可得:AG=GC=8-x,
在Rt△ABO中,
∵∠OAB=90°,∠AOB=30°,BO=8,
∴AO=BO•cos30°=8×
3
2
=4
3

在Rt△OAG中,OG2+OA2=AG2
x2+(4
3
2=(8-x)2
解得:x=1,
∴OG=1.