早教吧作业答案频道 -->其他-->
如图,已知半径为1的⊙O1与x轴交于A,B两点,圆心O1的坐标为(2,0),二次函数y=-x2+bx+c的图象经过A,B两点.(1)求二次函数的解析式;(2)射线OM从y轴正半轴开始,绕点O顺时针方向以每
题目详情
如图,已知半径为1的⊙O1与x轴交于A,B两点,圆心O1的坐标为(2,0),二次函数y=-x2+bx+c的图象经过A,B两点.
(1)求二次函数的解析式;
(2)射线OM从y轴正半轴开始,绕点O顺时针方向以每秒15°的速度旋转,几秒后射线OM与⊙O1相切?(切点为M)
(3)当射线OM与⊙O1相切时,在射线OM上是否存在一点P,使得以P,O,A为顶点的三角形与△OO1M相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.
(1)求二次函数的解析式;
(2)射线OM从y轴正半轴开始,绕点O顺时针方向以每秒15°的速度旋转,几秒后射线OM与⊙O1相切?(切点为M)
(3)当射线OM与⊙O1相切时,在射线OM上是否存在一点P,使得以P,O,A为顶点的三角形与△OO1M相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.
▼优质解答
答案和解析
(1)∵圆心O1的坐标为(2,0),⊙O1的半径是1,
∴点A(1,0),B(3,0),
∵二次函数y=-x2+bx+c的图象经过A,B两点,
∴
,
解得
,
∴二次函数解析式为y=-x2+4x-3;
(2)∵OM是⊙O1的切线,
∴O1M⊥OM,
∵OM1=
OO1=1,
∴∠O1OM=30°,
①OM在第一象限时,射线OM旋转了90°-30°=60°,
∵射线OM从y轴正半轴开始,绕点O顺时针方向以每秒15°的速度旋转,
∴射线OM旋转了60°÷15°=4秒;
②由对称性可知OM在第四象限内与⊙O1相切于点M,
射线OM旋转了90°+30°=120°,
∵射线OM从y轴正半轴开始,绕点O顺时针方向以每秒15°的速度旋转,
∴射线OM旋转了120°÷15°=8秒;
综上所述,4秒或8秒后射线OM与⊙O1相切;
(3)存在.
①OM在第一象限时,过点A作AP1⊥x轴交OM于P1,可得Rt△OP1A∽Rt△△OO1M,
P1A=OA•tan30°=1×
=
,
∴点P1(1,
∴点A(1,0),B(3,0),
∵二次函数y=-x2+bx+c的图象经过A,B两点,
∴
|
解得
|
∴二次函数解析式为y=-x2+4x-3;
(2)∵OM是⊙O1的切线,
∴O1M⊥OM,
∵OM1=
1 |
2 |
∴∠O1OM=30°,
①OM在第一象限时,射线OM旋转了90°-30°=60°,
∵射线OM从y轴正半轴开始,绕点O顺时针方向以每秒15°的速度旋转,
∴射线OM旋转了60°÷15°=4秒;
②由对称性可知OM在第四象限内与⊙O1相切于点M,
射线OM旋转了90°+30°=120°,
∵射线OM从y轴正半轴开始,绕点O顺时针方向以每秒15°的速度旋转,
∴射线OM旋转了120°÷15°=8秒;
综上所述,4秒或8秒后射线OM与⊙O1相切;
(3)存在.
①OM在第一象限时,过点A作AP1⊥x轴交OM于P1,可得Rt△OP1A∽Rt△△OO1M,
P1A=OA•tan30°=1×
| ||
3 |
| ||
3 |
∴点P1(1,
|
看了 如图,已知半径为1的⊙O1与...的网友还看了以下:
有甲,已两筐水果,甲筐水果重为(m-1)的平方kg,已筐水果重为(m的平方-1)kg(其中m大于1 2020-04-26 …
已知函数f(x)=-x^2+2lnx(ln2≈0.7)(1)若函数g(x)=f(x)-m在区间1/ 2020-04-26 …
已知反比例函数y=kx与直线y=1/4x相交于A.B两点.第一象限上M(m,n)已知双曲线y=k/ 2020-05-13 …
初三一元二次方程根与系数的关系题目(1)已知关于x的一元二次方程x平方-(m+1)x-(m平方-1 2020-05-15 …
韦达定理 已知一元二次方程8X-(m-1)X+M-7=0 M为何实数时,方程的两个根互为相反数一. 2020-05-16 …
已知二次函数y=(x-m)²-(x-m)(1)试说明该二次函数的图像与x轴必有两个交点已知二次函数 2020-07-31 …
几道集合的填空题已知M,N是两个非空集合,且对于M中的任何一个元素x,都有x¢N,则M、N的关系是 2020-08-01 …
已知圆C:x^2+(y-1)^2=5,直线L:mx-y+1-m=0(1)求证:m∈R时,直线L与圆C 2020-11-01 …
已知二次函数y=(m-1)x²+(m-2)x-1(m为实数),已知二次函数y=(m-1)x²+(m- 2020-11-27 …
已知关于x的方程x²+mx+m-1=0,求满足下列条件时m的值1.两根之和是1已知关于x的方程x²+ 2020-12-31 …