早教吧作业答案频道 -->数学-->
如图,O为矩形ABCD对角线的交点,M为AB边上任一点,射线ON⊥OM于点O,且与BC边交于点N,若AB=4,AD=6,则四边形OMBN面积的最大值为.
题目详情
如图,O为矩形ABCD对角线的交点,M为AB边上任一点,射线ON⊥OM于点O,且与BC边交于点N,若AB=4,AD=6,则四边形OMBN面积的最大值为___.
▼优质解答
答案和解析
(方法一)过点O作OE⊥AB于点E,作OF⊥BC于点F,如图所示.
∵四边形ABCD为矩形,AB=4,AD=6,
∴OE=3,OF=2,OE⊥OF,
∴∠EOM+∠FOM=90°,
∵∠FON+∠FOM=90°,
∴∠EOM=∠FON.
∵∠OEM=∠OFN=90°,
∴△FON∽△EOM,
∴OM:ON=OE:OF=3:2,
∴
=
.
设ME=x(0≤x≤2),则FN=
x,
∴S四边形OMBN=S矩形EBFO-S△EOM+S△FON=2×3-
×3x+
×2×
x=-
x+6,
∴当x=0时,S四边形OMBN取最大值,最大值为6.
故答案为:6.
(方法二)过点O作OE⊥AB于点E,作OF⊥BC于点F,当点M和点E重合、点N和点F重合时,四边形OMBN面积取最大值,如图所示.
∵S矩形EBFO=2×3=6,
∴四边形OMBN面积的最大值为6.
故答案为:6
∵四边形ABCD为矩形,AB=4,AD=6,
∴OE=3,OF=2,OE⊥OF,
∴∠EOM+∠FOM=90°,
∵∠FON+∠FOM=90°,
∴∠EOM=∠FON.
∵∠OEM=∠OFN=90°,
∴△FON∽△EOM,
∴OM:ON=OE:OF=3:2,
∴
S△OEM |
S△OFN |
9 |
4 |
设ME=x(0≤x≤2),则FN=
2 |
3 |
∴S四边形OMBN=S矩形EBFO-S△EOM+S△FON=2×3-
1 |
2 |
1 |
2 |
2 |
3 |
5 |
6 |
∴当x=0时,S四边形OMBN取最大值,最大值为6.
故答案为:6.
(方法二)过点O作OE⊥AB于点E,作OF⊥BC于点F,当点M和点E重合、点N和点F重合时,四边形OMBN面积取最大值,如图所示.
∵S矩形EBFO=2×3=6,
∴四边形OMBN面积的最大值为6.
故答案为:6
看了 如图,O为矩形ABCD对角线...的网友还看了以下:
数轴上点A对应的数是-1,B点对应的数是1,点A、B、C分别以1单位一秒,三单位一秒,四单位一秒在数 2020-03-30 …
数轴上点A对应的数是-1,B点对应的数是1,点A、B、C分别以1单位一秒,三单位一秒,四单位一秒在数 2020-03-30 …
A,B,O是平面内不共线的三个定点,OA=a,OB=b,点P关于点A的对称点为Q,点Q关于点B的对 2020-05-02 …
抛物线为二次函数y=x2-2x-3的图像,它与x轴相交于A、B两点(点A在点B的左侧),与y轴相交 2020-05-16 …
已知,如图抛物线的顶点为原点,且与一次函数y=x+b的图像交于A,B两点,其中点B的坐标为(4,8 2020-05-16 …
如图,在平面直角坐标系xoy中,抛物线y=x2+bx+c与x轴交于a、b两点(点a在点b的左侧), 2020-05-16 …
在平面直角坐标系x0y中,抛物线y=x2+bx+c与X轴交于A、B两点(点A在点B的左侧)与Y轴交 2020-05-16 …
如图,抛物线y=ax2+3ax+c(a>0)与y轴交于C点,与x轴交于A、B两点,A点在如图,抛物 2020-06-03 …
绝对值是2.3的有理数是()数轴上点a和点b表示的数是-3和2,那么:(1)点a点b到原点的距离分 2020-06-03 …
如图,等边三角形ABO放在平面直角坐标系中,其中点O为坐标原点,点B的坐标为(-8,0),点A位于 2020-06-08 …