早教吧作业答案频道 -->数学-->
设f(x)=根号x,p,q>0,且p+q=1,求证pf(x1)+qf(x2)=
题目详情
设f(x)=根号x,p,q>0,且p+q=1,求证pf(x1)+qf(x2)=
▼优质解答
答案和解析
f(x)=√x
pf(x1)+qf(x2)=p√x1+q√x2
f(px1+qx2)=√(px1+qx2)
p,q大于0,
则,[pf(x1)+qf(x2)]^2-[f(px1+qx2)]^2=
p^2x1+q^2x2+2pq√x1x2-(px1+qx2)
=(p^2-p)x1+(q^2-q)x2+2pq√x1x2
=p(p-1)x1+q(q-1)x2+2pq√x1x2
p+q=1,则
p(p-1)x1+q(q-1)x2+2pq√x1x2
=-(pqx1+pqx2)+2pq√x1x2
由重要不等式得:
(pqx1+pqx2)≥2√pqx1pqx2=2pq√x1x2
所以-(pqx1+pqx2)+2pq√x1x2≤0
所以[pf(x1)+qf(x2)]^2-[f(px1+qx2)]^2≤0
所以[pf(x1)+qf(x2)]≤[f(px1+qx2)]^2
pf(x1)+qf(x2)=p√x1+q√x2
f(px1+qx2)=√(px1+qx2)
p,q大于0,
则,[pf(x1)+qf(x2)]^2-[f(px1+qx2)]^2=
p^2x1+q^2x2+2pq√x1x2-(px1+qx2)
=(p^2-p)x1+(q^2-q)x2+2pq√x1x2
=p(p-1)x1+q(q-1)x2+2pq√x1x2
p+q=1,则
p(p-1)x1+q(q-1)x2+2pq√x1x2
=-(pqx1+pqx2)+2pq√x1x2
由重要不等式得:
(pqx1+pqx2)≥2√pqx1pqx2=2pq√x1x2
所以-(pqx1+pqx2)+2pq√x1x2≤0
所以[pf(x1)+qf(x2)]^2-[f(px1+qx2)]^2≤0
所以[pf(x1)+qf(x2)]≤[f(px1+qx2)]^2
看了 设f(x)=根号x,p,q>...的网友还看了以下:
设函数f(x)的定义域为R,若有f(π/2)=0,f(π)=-1且对任意x1,x2都有:f(x1) 2020-04-12 …
已知函数f(x)=ax^3+bx^2-x+c(a,b,c属于R且a不等于0)⑴若b=1且f(x)在 2020-05-16 …
已知f(x)=根号(1+x^2)定义在区间[-1,1]上,设x1,x2∈[-1,1]且x1≠x2( 2020-05-22 …
已知f(x)=根号(1+x^2)定义在区间[-1,1]上,设x1,x2∈[-1,1]且x1≠x2( 2020-05-22 …
已知函数f(x)=ax的平方+bx(ab≠0)若f(x1)=f(x2)且x1≠x2求f(x1+x2 2020-06-02 …
数学导数证明题f(x)=4x/(x^2+1) 若对于任意0<x1<x2<1,存在x0,使得f(x0 2020-06-27 …
已知函数f(x)=x1+x2,x∈(0,1).(1)设x1,x2∈(0,1),证明:(x1-x2) 2020-07-10 …
C语言解方程问题#include"stdio.h"#include"math.h"floatf(f 2020-07-23 …
数学判断题,求教.1.函数y=lnC,则y'=1/c2.若函数f(x)在X1上点连续,则函数f(x 2020-08-02 …
已知f(x)=e^x,g(x)=lnx(1)求证g(x)<x<f(x)(2)设直线L与f(x),g( 2020-10-31 …