早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知三个平面两两相交,有三条交线,求证这三条交线交于一点或互相平行.

题目详情
已知三个平面两两相交,有三条交线,求证这三条交线交于一点或互相平行.
▼优质解答
答案和解析
证明:设三个平面为α,β,γ,
且α∩β=c,α∩γ=b,β∩γ=a;∵α∩β=c,α∩γ=b,∴c⊂α,b⊂α;
∴c与b交于一点,或互相平行.
(1)如图①,若c与b交于一点,可设c∩b=P.
由P∈c,且c⊂β,有P∈β;又由P∈b,b⊂γ,有P∈γ;∴P∈β∩γ=a;
所以,直线a,b,c交于一点(即P点).
图①;       图②
(2)如图②,若c∥b,则由b⊂γ,且c⊄γ,∴c∥γ;又由c⊂β,
且β∩γ=a,∴c∥a;所以a,b,c互相平行.
看了 已知三个平面两两相交,有三条...的网友还看了以下: