早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知在等腰△ABC中,AB=AC,在射线CA上截取线段CE,在射线AB上截取线段BD,连接DE,DE所在直线交直线BC与点M.请探究:(1)如图(1),当点E在线段AC上,点D在AB延长线上时,若BD=CE,请判断

题目详情
已知在等腰△ABC中,AB=AC,在射线CA上截取线段CE,在射线AB上截取线段BD,连接DE,DE所在直线交直线BC与点M.请探究:

(1)如图(1),当点E在线段AC上,点D在AB延长线上时,若BD=CE,请判断线段MD和线段ME的数量关系,并证明你的结论.
(2)如图(2),当点E在CA的延长线上,点D在AB的延长线上时,若BD=CE,则(1)中的结论还成立吗?如果成立,请证明;如果不成立,说明理由;
(3)如图(3),当点E在CA的延长线上,点D在线段AB上(点D不与A,B重合),DE所在直线与直线BC交于点M,若CE=2BD,请直接写出线段MD与线段ME的数量关系.
▼优质解答
答案和解析
解(1)DM=EM.理由如下:
如图(1),过点E作EF∥AB交BC于点F.
∵AB=AC,
∴∠ABC=∠C;
又∵EF∥AB,
∴∠ABC=∠EFC,
∴∠EFC=∠C,
∴EF=EC.
又∵BD=EC,
∴EF=BD.
又∵EF∥AB,
∴∠ADM=∠MEF.
在△DBM和△EFM中,
∠BDM=∠FEM
∠BMD=∠FME
BD=EF

∴△DBM≌△EFM(AAS),
∴DM=EM;

(2)成立.理由如下:如图(2),过点E作EF∥AB交CB的延长线于点F,
∵AB=AC,
∴∠ABC=∠C;
又∵EF∥AB,
∴∠ABC=∠EFC,
∴∠EFC=∠C,
∴EF=EC.
又∵BD=EC,
∴EF=BD.
又∵EF∥AB,
∴∠ADM=∠MEF.
在△DBM和△EFM中,
∠BDE=∠FEM
∠BMD=∠FME
BD=EF

∴△DBM≌△EFM(AAS);
∴DM=EM;

(3)如图(3),过点E作EF∥AB交CB的延长线于点F,
∴△DBM∽△EFM,
∴BD:EF=DM:ME,
∵AB=AC,
∴∠ABC=∠C,
∵∠F=∠ABC,
∴∠F=∠C,
∴EF=EC,
∴BD:EC=DM:ME=1:2,
∴MD=
1
2
ME.