早教吧作业答案频道 -->数学-->
如图,点E在正方形ABCD的对角线AC上,CF⊥BE交BD于点G,F是垂足.求证:四边形ABGE是等腰梯形.
题目详情
如图,点E在正方形ABCD的对角线AC上,CF⊥BE交BD于点G,F是垂足.求证:四边形ABGE是等腰梯形.
▼优质解答
答案和解析
证明:∵四边形ABCD是正方形,
∴AC⊥BD,BO=CO,
∠ABO=∠ABE+∠EBO=45°,
∠BCO=∠BCG+∠GCO=45°,
∵CF⊥BE,
∴∠BEC+∠GCO=90°,
∵AC⊥BD,
∴∠EBO+∠BEC=90°,
∴∠EBO=∠GCO,
∴∠ABE=∠BCG,
在△ABE和△BGC中,
∴△ABE≌△BGC,
∴AE=BG,
∴EO=GO,
∠OEG=∠OAB=45°
∴EG∥AB
∴AE=BG,
∴四边形ABGE是等腰梯形.
∴AC⊥BD,BO=CO,
∠ABO=∠ABE+∠EBO=45°,
∠BCO=∠BCG+∠GCO=45°,
∵CF⊥BE,
∴∠BEC+∠GCO=90°,
∵AC⊥BD,
∴∠EBO+∠BEC=90°,
∴∠EBO=∠GCO,
∴∠ABE=∠BCG,
在△ABE和△BGC中,
|
∴△ABE≌△BGC,
∴AE=BG,
∴EO=GO,
∠OEG=∠OAB=45°
∴EG∥AB
∴AE=BG,
∴四边形ABGE是等腰梯形.
看了 如图,点E在正方形ABCD的...的网友还看了以下:
设函数f(x)在[a,b]上连续,在(a,b)内可导,且f'(x)不等于0.试证明存在x1,x2属 2020-05-14 …
f(x)=e^x-kx,设函数F(x)=f(x)+f(-x),求证F(1)F(2)……F(n)>[ 2020-05-21 …
已知函数f(x)=mxlnx(m>0),f(x)在点(e,f(e))处的切线与x轴、y轴分别交于A 2020-06-12 …
请大神来做一道中值证明题f(x)在[0,a]上连续,在(0,a)内可导,且f(a)等于0,证明存在 2020-06-14 …
证明题,设在某静电场域中任意点的电场强度均平行于x轴,证E于坐标轴Y,Z无关 2020-06-14 …
1.在平行四边形ABCD中,E、F分别是AC上的两点,且BE⊥AC于E,DF⊥AC于F,证BE=D 2020-06-18 …
三角形ABC中,∠A=90°,AB=AC,D为BC的中点,AE⊥BD于F,交BC于E求证角ADB= 2020-06-27 …
高一数学问题1.对于函数f(x)=a-2/(除以的意思)2的x次方减2(a属于R)(1)探索函数f 2020-08-01 …
已知f(x)=e的x次方-e的负x次方;(1)证明f(x)的导函数大于等于2;(2)当x大于等于0时 2020-12-08 …
设f(x)在(0,1)连续,在(0,1)内可导,证明:存在x属于(0,1),使得f(x)+fx的导数 2021-01-13 …