早教吧 育儿知识 作业答案 考试题库 百科 知识分享

在平面直角坐标系上,有一点列P0,P1,P2,P3,…,Pn-1,Pn,设点Pk的坐标(xk,yk)(k∈N,k≤n),其中xk、yk∈Z,记△xk=xk-xk-1,△yk=yk-yk-1,且满足|△xk|•|△yk|=2(k∈N*,k≤n);(1)已

题目详情
在平面直角坐标系上,有一点列P0,P1,P2,P3,…,Pn-1,Pn,设点Pk的坐标(xk,yk)(k∈N,k≤n),其中xk、yk∈Z,记△xk=xk-xk-1,△yk=yk-yk-1,且满足|△xk|•|△yk|=2(k∈N*,k≤n);
(1)已知点P0(0,1),点P1满足△y1>△x1>0,求P1的坐标;
(2)已知点P0(0,1),△xk=1(k∈N*,k≤n),且{yk}(k∈N,k≤n)是递增数列,点Pn在直线l:y=3x-8上,求n;
(3)若点P0的坐标为(0,0),y2016=100,求x0+x1+x2+…+x2016的最大值.
▼优质解答
答案和解析
(1)∵xk∈Z,yk∈Z,∴△xk,△yk∈Z,
又∵|△x1|•|△y1|=2,0<△x1<△y1
△x1=1
△y1=2

∴x1=x0+△x1=0+1=1,
y1=y0+△y1=1+2=3,
∴P1的坐标为(1,3).
(2)∵x0=0,△xk=1(k∈N*,k≤n),
∴xn=x0+△x1+△x2+…+△xn=n,
又|△xk|•|△yk|=2,△xk=1,
∴△yk=±2,(k∈N*,k≤n),
∵yk=y0+△y1+△y2+△y3+…+△yn
{yk}(k∈N,k≤n)是增数列,
△yk=2,(k∈N*,k≤n),
∴yk=y0+△y1+△y2+△y3+…+△yn=1+2n,
∴pn(n,1+2n),
将Pn(n,1+2n)代入y=3x-8,得1+2n=3n-8,
解得n=9.
(3)∵yk=y0+△y1+△y2+△y3+…+△yn
∴y2016=△y1+△y2+…+△y2016=100,
设Tn=x0+x1+x2+…+xn
=x0+(x0+△x1)+(x0+△x1+△x2)+…+(x0+△x1+△x2+…+△xn
=n△x1+(n-1)△x2+…+2△xn-1+△xn
∵n=2016是偶数,n>100,
Tn=n△x1+(n-1)△x2+…+2△xn-1+△xn≤2[n+(n-1)+…+2+1]=n2+n,
当△y1=△y2=△y3=…=△y100=1,
△y101=-1,…,△yn-1=1,△yn=-1,
△x1=△x2=△x3=…=△xn=2时,(取法不唯一)
(Tnmax=n2+n,
∴x0+x1+x2+…+x2016的最大值(T2016max=20162+2016=4066272.