早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知二次函数f(x)=x2+bx+c,其中常数b,c∈R.(Ⅰ)若任意的x∈[-1,1],f(x)≥0,f(2+x)≤0,试求实数c的取值范围;(Ⅱ)若对任意的x1,x2∈[-1,1],有|f(x1)-f(x2)|≤4,试求实数b

题目详情
已知二次函数f(x)=x2+bx+c,其中常数b,c∈R.
(Ⅰ)若任意的x∈[-1,1],f(x)≥0,f(2+x)≤0,试求实数c的取值范围;
(Ⅱ)若对任意的x1,x2∈[-1,1],有|f(x1)-f(x2)|≤4,试求实数b的取值范围.
▼优质解答
答案和解析
(Ⅰ)因为x∈[-1,1],则2+x∈[1,3],
由已知,有对任意的x∈[-1,1],f(x)≥0恒成立,
任意的x∈[1,3],f(x)≤0恒成立,
故f(1)=0,即1为函数函数f(x)的一个零点.
由韦达定理,可得函数f(x)的另一个零点,
又由任意的x∈[1,3],f(x)≤0恒成立,
∴[1,3]⊆[1,c],
即c≥3
(Ⅱ)函数f(x)=x2+bx+c对任意的x1,x2∈[-1,1],有|f(x1)-f(x2)|≤4恒成立,
即f(x)max-f(x)min≤4,
记f(x)max-f(x)min=M,则M≤4.
当|-
b
2
|>1,即|b|>2时,M=|f(1)-f(-1)|=|2b|>4,与M≤4矛盾;
当|-
b
2
|≤1,即|b|≤2时,M=max{f(1),f(-1)}-f(-
b
2
)=
f(1)+f(-1)+|f(1)-f(-1)|
2
-f(-
b
2
)=(1+
|b|
2
2≤4,
解得:|b|≤2,
即-2≤b≤2,
综上,b的取值范围为-2≤b≤2.