早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知如图,抛物线y=x2-x-1与y轴交于C点,以原点O为圆心,以OC为半径作⊙O,交x轴于A、B两点,交y轴于另一点D.设点P为抛物线y=x2-x-1上的一点,作PM⊥x轴于点M,求使△PMB∽△ADB时的P点坐标.

题目详情
已知如图,抛物线y=x2-x-1与y轴交于C点,以原点O为圆心,以OC为半径作⊙O,交x轴于A、B两点,交y轴于另一点D.设点P为抛物线y=x2-x-1上的一点,作PM⊥x轴于点M,求使△PMB∽△ADB时的P点坐标.
▼优质解答
答案和解析
当x=0时,y=-1,
∴C的坐标是(0,-1),
∵以原点O为圆心,以OC为半径作⊙O,交x轴于A、B两点,交y轴于另一点D,
∴A(-1,0),B(1,0),D(0,1),
由勾股定理得:AD=BD=
2

∵OA=OB=OD,
∴∠ADB=90°,
即△ADB是等腰直角三角形,
∵△PMB∽△ADB,
∴△PMB是等腰直角三角形,
∵∠PMB=90°,
∴PM=BM,
设P的坐标是(x,x2-x-1),B(1,0),
∴BM=|x-1|,
∴x-1=x2-x-1,-(x-1)=x2-x-1,
即x2-2x=0,x2=2,
解得:x1=0,x2=2,x3=
2
,x4=-
2

∴y1=x2-x-1=-1,y2=1,y3=1-
2
,y4=1+
2

∴P的坐标是(0,-1),(2,1),(
2
,1-
2
),(-
作业帮用户 2016-11-27
我是二维码 扫描下载二维码