早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知圆C的圆心在直线y=-2x上,并且经过点A(2,-1),与直线x+y=1相切.求圆C的方程已知点B(-1,-1),E(1,1),F(0,6),点P在圆上,求|PB|^2+|PE|^2+|PF|^2的最大值和最小值

题目详情
已知圆C的圆心在直线y=-2x上,并且经过点A(2,-1),与直线x+y=1相切.
求圆C的方程
已知点B(-1,-1),E(1,1),F(0,6),点P在圆上,求|PB|^2+|PE|^2+|PF|^2的最大值和最小值
▼优质解答
答案和解析
点 A(2,-1) 在已知直线 x+y=1,圆C 过 A 且与该已知直线相切,那么 A 就是切点;
过 A 作已知直线的垂线,则圆C在此直线上:y+1=x-2;
两直线方程联立解得圆心C 坐标 x=1,y=-2;圆半径 R²=AC²=(2-1)²+(-1+2)²=2;
圆C 的方程:(x-1)²+(y+2)²=2;
设 P(x,y) 在圆 C 上,则 f(x,y)=|PB|²+|PE|²+|PF|²=(x+1)²+(y+1)²+(x-1)²+(y-1)²+x²+(y-6)²;
整理 f(x,y)=3(x-1)²+6x+3(y+2)²-24y+25=6x-24y+31;
当直线 f(x,y)=m (斜率 k=1/4)与圆 C 相切时,可得到 f(x,y) 的最大和最小值;
对圆 C 两边求导:2(x-1)+2(y+2)*y'=0,∴ 切点 y'=(1-x)/(y+2)=1/4,代入圆C方程可解得:
(x-1)²+[4(1-x)]²=2,x=1±√(2/17),y=-2+4(1-x)=-2-[±4√(2/17)];
f(x,y)=6x-24y+31=6*[1±√(2/17)]-24*[-2-±4√(2/17)]+31=85±102√(2/17)=85±6√34;