早教吧作业答案频道 -->数学-->
已知F1,F2是双曲线y2a2-x2b2=1(a>0,b>0)的下、上焦点,点F2关于渐近线的对称点恰好落在以F1为圆心,|OF1|为半径的圆上,则双曲线的离心率为()A.2B.2C.3D.3
题目详情
已知F1,F2是双曲线
-
=1(a>0,b>0)的下、上焦点,点F2关于渐近线的对称点恰好落在以F1为圆心,|OF1|为半径的圆上,则双曲线的离心率为( )
A.
B. 2
C.
D. 3
y2 |
a2 |
x2 |
b2 |
A.
2 |
B. 2
C.
3 |
D. 3
▼优质解答
答案和解析
由题意,F1(0,-c),F2(0,c),一条渐近线方程为y=
x,则F2到渐近线的距离为
=b.
设F2关于渐近线的对称点为M,F2M与渐近线交于A,∴|MF2|=2b,A为F2M的中点,
又0是F1F2的中点,∴OA∥F1M,∴∠F1MF2为直角,
∴△MF1F2为直角三角形,
∴由勾股定理得4c2=c2+4b2
∴3c2=4(c2-a2),∴c2=4a2,
∴c=2a,∴e=2.
故选:B.
a |
b |
bc | ||
|
设F2关于渐近线的对称点为M,F2M与渐近线交于A,∴|MF2|=2b,A为F2M的中点,
又0是F1F2的中点,∴OA∥F1M,∴∠F1MF2为直角,
∴△MF1F2为直角三角形,
∴由勾股定理得4c2=c2+4b2
∴3c2=4(c2-a2),∴c2=4a2,
∴c=2a,∴e=2.
故选:B.
看了 已知F1,F2是双曲线y2a...的网友还看了以下:
设函数f(x)=x^2-alnx与g(x)=(1/a)x-根号x的图像分别交直线x=1于点A,B, 2020-04-05 …
一个点从数轴上的原点开始,先向右移动2个单位长度,再向左移动5个单位长度,可以看到终点表示的数是- 2020-04-05 …
直线方程之对称问题:已知直线l:2x-3y+1=0,点A(-1.-2)求A关于直线对称的点B的坐标 2020-04-06 …
已知椭圆x2/4+y2/2=1(四分之x方+二分之y方=1),点A、B分别是它的左右定点,一条垂直 2020-04-27 …
点p从距原点1个单位长度的点A处向原点方向跳动,第1次跳动到O的终点A1处,点p从距原点1个单位长 2020-05-13 …
已知曲线C:(x-1)2+y2=1,点A(-1,0)及点B(2,a),从点A观察点B,要使视线不被 2020-05-15 …
椭圆x^2/2+y^2=1,过点A(2,1)的直线与椭圆交于M,N两点,求弦MN的中点P轨迹方程设 2020-05-15 …
函数数学题.设f(x)=x^2-alnx g(x)=x-a根号x的图像分别交直线x+1于点A,B, 2020-05-15 …
已知A(3,-5),B(1,-7),则向量AB的坐标是 ,AB的中点的坐标是已知A(3,-5),B 2020-05-16 …
已知数轴上有A、B两点,A、B两点之间的距离为1,点A与原点的距离为4,求所所有满足条件的点B与原 2020-05-22 …