早教吧作业答案频道 -->数学-->
已知F1,F2是双曲线y2a2-x2b2=1(a>0,b>0)的下、上焦点,点F2关于渐近线的对称点恰好落在以F1为圆心,|OF1|为半径的圆上,则双曲线的离心率为()A.2B.2C.3D.3
题目详情
已知F1,F2是双曲线
-
=1(a>0,b>0)的下、上焦点,点F2关于渐近线的对称点恰好落在以F1为圆心,|OF1|为半径的圆上,则双曲线的离心率为( )
A.
B. 2
C.
D. 3
y2 |
a2 |
x2 |
b2 |
A.
2 |
B. 2
C.
3 |
D. 3
▼优质解答
答案和解析
由题意,F1(0,-c),F2(0,c),一条渐近线方程为y=
x,则F2到渐近线的距离为
=b.
设F2关于渐近线的对称点为M,F2M与渐近线交于A,∴|MF2|=2b,A为F2M的中点,
又0是F1F2的中点,∴OA∥F1M,∴∠F1MF2为直角,
∴△MF1F2为直角三角形,
∴由勾股定理得4c2=c2+4b2
∴3c2=4(c2-a2),∴c2=4a2,
∴c=2a,∴e=2.
故选:B.
a |
b |
bc | ||
|
设F2关于渐近线的对称点为M,F2M与渐近线交于A,∴|MF2|=2b,A为F2M的中点,
又0是F1F2的中点,∴OA∥F1M,∴∠F1MF2为直角,
∴△MF1F2为直角三角形,
∴由勾股定理得4c2=c2+4b2
∴3c2=4(c2-a2),∴c2=4a2,
∴c=2a,∴e=2.
故选:B.
看了 已知F1,F2是双曲线y2a...的网友还看了以下:
1/2{1/2[1/2(1/2y-3)-3]-3}=17x-1/0.024=1-0.2x/0.08 2020-04-27 …
(1)1/1*2+1/2*3+.+1/2009*2010(2)1/2*4+1/4*6+.+1/20 2020-05-17 …
已知点P(a,b)与点Q(1,0)在直线2x-3y+1=0的两侧,则下列说法正确的是.①2a-3b 2020-05-24 …
(1/2+1/3+1/4+...1/2013)X(1+1/2+1/3+1/4+...1/2012) 2020-07-14 …
把3.14•1、3.141、3.1•4、3.•14•1、3.1•4•1按由大到小的顺序排列起来.3 2020-07-18 …
设R^3中的一组基ξ1=(1,-2,1)T,ξ2=(0,1,1)T,ξ3=(3,2,1)T,向量α在 2020-11-02 …
初一一道数学找规律的题急用1.将1,-1/2,1/3,-1/4,1/5,-1/6,.按一定的规律排列 2020-11-03 …
求一道预备班数学期中考试的答案小明在做题时发现了一个规律:1*2/1=1-2/1,2*3/1=2/1 2020-11-05 …
观察下列等式①1/√2+1=√2-1/(√2+1)(√2-1)=-1+√2②1/√3+√2=√3-√ 2020-12-07 …
高中数学抽象函数已知定义在(-1,1)上的函数f(x)满足f(1/2)=1,且对任意x,y∈(-1, 2020-12-08 …