早教吧作业答案频道 -->数学-->
在平面直角坐标系中,抛物线y=-x²+bx+c与x轴交于点A(-2,0),B(-4,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的顶点为D,点P在抛物线的对称轴上,且∠APD=∠ACB,求点P的坐
题目详情
在平面直角坐标系中,抛物线y=-x²+bx+c与x轴交于点A(-2,0),B(-4,0)两点,与y轴交于点C.
(1)求抛物线的解析式;
(2)设抛物线的顶点为D,点P在抛物线的对称轴上,且∠APD=∠ACB,求点P的坐标;
(3)点Q在直线BC上方的抛物线上,且点Q到直线BC的距离最远,求点Q坐标.
(1)求抛物线的解析式;
(2)设抛物线的顶点为D,点P在抛物线的对称轴上,且∠APD=∠ACB,求点P的坐标;
(3)点Q在直线BC上方的抛物线上,且点Q到直线BC的距离最远,求点Q坐标.
▼优质解答
答案和解析
答:
1)把点A(-2,0)和点B(-4,0)代入抛物线方程y=-x^2+bx+c得:
-4-2b+c=0
-16-4b+c=0
解得:b=-6,c=-8
所以:抛物线的解析式为y=-x^2-6x-8.
2)抛物线y=-x^2-6x-8的对称轴x=-3,顶点D(-3,1),与y轴的交点C(0,-8).
△ABC中:AB=-2-(-4)=2;AC=√[(-2)^2+(-8)^2]=2√17;BC=√[(-4)^2+(-8)^2]=4√5.
根据余弦定理得:
cos∠ACB=(AC^2+BC^2-AB^2)/(2AC*BC)
=(68+80-4)/(2*8√85)=9/√85
设点P为(-3,p).
△APD中:AD=√[(-3+2)^2+(1-0)^2]=√2,PD=|p-1|,PA=√[(-3+2)^2+(p-0)^2]=√(p^2+1)
根据余弦定理得:
cos∠APD=(PA^2+PD^2-AD^2)/(2PA*PD)
=(p^2+1+p^2-2p+1-2)/[2|p-1|*√(p^2+1)]
=p(p-1)/[|p-1|*√(p^2+1)]
=cos∠ACB
=9/√85
解得:p=9/2或者p=-9/2
所以:点P的坐标为(-3,-9/2)或者(-3,9/2).
3)直线BC为y-0=(x+4)(-8-0)/(0+4)=-2x-8,即:y=-2x-8
点Q在抛物线上、处于BC直线上方并且离直线BC最远,则经过点Q平行BC的直线必定与BC直线平行,并且是抛物线经过点Q的切线.
设该切线为y=-2x+b,代入抛物线方程y=-x^2-6x-8整理得:
x^2+4x+b+8=0
交点唯一,则判别式△=4^2-4*1*(b+8)=0,解得b=-4;
解方程得:x=-2,代入抛物线方程得y=0
所以点Q为(-2,0),与点A重合.
1)把点A(-2,0)和点B(-4,0)代入抛物线方程y=-x^2+bx+c得:
-4-2b+c=0
-16-4b+c=0
解得:b=-6,c=-8
所以:抛物线的解析式为y=-x^2-6x-8.
2)抛物线y=-x^2-6x-8的对称轴x=-3,顶点D(-3,1),与y轴的交点C(0,-8).
△ABC中:AB=-2-(-4)=2;AC=√[(-2)^2+(-8)^2]=2√17;BC=√[(-4)^2+(-8)^2]=4√5.
根据余弦定理得:
cos∠ACB=(AC^2+BC^2-AB^2)/(2AC*BC)
=(68+80-4)/(2*8√85)=9/√85
设点P为(-3,p).
△APD中:AD=√[(-3+2)^2+(1-0)^2]=√2,PD=|p-1|,PA=√[(-3+2)^2+(p-0)^2]=√(p^2+1)
根据余弦定理得:
cos∠APD=(PA^2+PD^2-AD^2)/(2PA*PD)
=(p^2+1+p^2-2p+1-2)/[2|p-1|*√(p^2+1)]
=p(p-1)/[|p-1|*√(p^2+1)]
=cos∠ACB
=9/√85
解得:p=9/2或者p=-9/2
所以:点P的坐标为(-3,-9/2)或者(-3,9/2).
3)直线BC为y-0=(x+4)(-8-0)/(0+4)=-2x-8,即:y=-2x-8
点Q在抛物线上、处于BC直线上方并且离直线BC最远,则经过点Q平行BC的直线必定与BC直线平行,并且是抛物线经过点Q的切线.
设该切线为y=-2x+b,代入抛物线方程y=-x^2-6x-8整理得:
x^2+4x+b+8=0
交点唯一,则判别式△=4^2-4*1*(b+8)=0,解得b=-4;
解方程得:x=-2,代入抛物线方程得y=0
所以点Q为(-2,0),与点A重合.
看了 在平面直角坐标系中,抛物线y...的网友还看了以下:
下列现象中属于买方市场的是A.供不应求B.供过于求C.物价上涨D.纸币贬值 2020-05-13 …
(2012•温州三模)如图,抛物线F:y=x2-2x+3的顶点为P,与y轴交于点A,过点P作PB⊥ 2020-05-14 …
已知抛物线y=x^2-4x+3与x轴交于点AB(A左B右)与y轴交于C点P是抛物线对称轴上一点,且 2020-05-16 …
关于抛物线若A,B是抛物线y²=4x上的不同两两点,弦AB(不平行于y轴)的垂直平分线与x轴相交于 2020-06-14 …
如图,抛物线y=x2-bx+c交x轴于点A(1,0),交y轴于点B,对称轴是x=2.(1)求抛物线 2020-06-29 …
如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点 2020-07-26 …
已知抛物线C:x2=2py(p>0)的焦点为F,直线2x-y+2=0交抛物线C于A,B两点,P是线 2020-07-26 …
已知抛物线C:y=ax^2,p(1,-1)在抛物线C上,过点P作斜率为K1,K2的两条直线,分别交 2020-07-31 …
关于求抛物线的解析式某些公式如何推出|x1-x2|=根号△/|a|=>|x1-x2|/2=|-△/4 2020-11-07 …
已知如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动 2021-01-12 …