早教吧作业答案频道 -->数学-->
在平面直角坐标系xoy中,直线l与抛物线y2=4x相交于不同的A、B两点.(Ⅰ)如果直线l过抛物线的焦点,求OA•OB的值;(Ⅱ)如果OA•OB=-4,证明直线l必过一定点,并求出该定点.
题目详情
在平面直角坐标系xoy中,直线l与抛物线y2=4x相交于不同的A、B两点.
(Ⅰ)如果直线l过抛物线的焦点,求
•
的值;
(Ⅱ)如果
•
=-4,证明直线l必过一定点,并求出该定点.
(Ⅰ)如果直线l过抛物线的焦点,求
OA |
OB |
(Ⅱ)如果
OA |
OB |
▼优质解答
答案和解析
(Ⅰ)由题意:抛物线焦点为(1,0)
设l:x=ty+1代入抛物线y2=4x消去x得,
y2-4ty-4=0,设A(x1,y1),B(x2,y2)
则y1+y2=4t,y1y2=-4
∴
•
=x1x2+y1y2=(ty1+1)(ty2+1)+y1y2
=t2y1y2+t(y1+y2)+1+y1y2
=-4t2+4t2+1-4=-3.
(Ⅱ)设l:x=ty+b代入抛物线y2=4x,消去x得
y2-4ty-4b=0设A(x1,y1),B(x2,y2)
则y1+y2=4t,y1y2=-4b
∴
•
=x1x2+y1y2=(ty1+b)(ty2+b)+y1y2
=t2y1y2+bt(y1+y2)+b2+y1y2
=-4bt2+4bt2+b2-4b=b2-4b
令b2-4b=-4,∴b2-4b+4=0∴b=2.
∴直线l过定点(2,0).
设l:x=ty+1代入抛物线y2=4x消去x得,
y2-4ty-4=0,设A(x1,y1),B(x2,y2)
则y1+y2=4t,y1y2=-4
∴
OA |
OB |
=t2y1y2+t(y1+y2)+1+y1y2
=-4t2+4t2+1-4=-3.
(Ⅱ)设l:x=ty+b代入抛物线y2=4x,消去x得
y2-4ty-4b=0设A(x1,y1),B(x2,y2)
则y1+y2=4t,y1y2=-4b
∴
OA |
OB |
=t2y1y2+bt(y1+y2)+b2+y1y2
=-4bt2+4bt2+b2-4b=b2-4b
令b2-4b=-4,∴b2-4b+4=0∴b=2.
∴直线l过定点(2,0).
看了 在平面直角坐标系xoy中,直...的网友还看了以下:
哪个词语和其他的不同类.1.A昂首挺胸B胆颤心惊C左思右想D犹豫不决E没精打采2.A鞠躬尽瘁B奋不 2020-04-06 …
下面关于空间向量的说法正确的是[]A.若向量a、b平行,则a、b所在直线平行B.若向量a、b所在直 2020-05-13 …
用符号表示“点A在直线l上,l在平面a外”,正确的是().A.A属于l,l不属于a.B.A属于l, 2020-05-13 …
设A与B均为N阶矩阵,则下列结论正确的是:A若/AB/=0则A=0或B=0B若/AB/=0,则/A 2020-05-14 …
数集A满足条件若a∈A 则1/(1-a)∈A a≠1 (1)若2∈A 试求A中其他所有元素(2)自 2020-05-15 …
设f:A→B是集合A到B的映射,下列说法正确的是( )(A)A中不同元素在B中必有不同的元素与它对 2020-05-15 …
1、已知a,b,c互不相等求2a-b-c/(a-b)(b-c)+2b-c-a/(b-c)(b-a) 2020-05-16 …
若a>b>0,则下列不等式不一定成立的是( )A.ac>bc B.a+c>b+c若a>b>0,则下 2020-05-16 …
已知集合A,B,若A不是B的子集,则下列命题中正确的是?A.对任意的a∈A,都有a不∈BB.对任意 2020-05-17 …
高一数学必修五一元二次不等式(求过程,一定及时采纳)解关于x的不等式x³-(a²+a)x+a²>0 2020-06-02 …