早教吧作业答案频道 -->数学-->
如图,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿y轴以每秒1个单位长的速度向上移动,且过点P的直线l:y=-x+b也随之移动,设移动时间为t秒.(1)当t=3时,求l的解析式;(2)
题目详情
如图,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿y轴以每秒1个单位长的速度向上移动,且过点P的直线l:y=-x+b也随之移动,设移动时间为t秒.
(1)当t=3时,求l的解析式;
(2)若点M,N位于l的异侧,确定t的取值范围;
(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.
(1)当t=3时,求l的解析式;
(2)若点M,N位于l的异侧,确定t的取值范围;
(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.
▼优质解答
答案和解析
(1)直线y=-x+b交y轴于点P(0,b),
由题意,得b>0,t≥0,b=1+t.
当t=3时,b=4,
故y=-x+4.
(2)当直线y=-x+b过点M(3,2)时,
2=-3+b,
解得:b=5,
5=1+t,
解得t=4.
当直线y=-x+b过点N(4,4)时,
4=-4+b,
解得:b=8,
8=1+t,
解得t=7.
故若点M,N位于l的异侧,t的取值范围是:4<t<7.
(3)如右图,过点M作MF⊥直线l,交y轴于点F,交x轴于点E,则点E、F为点M在坐标轴上的对称点.
过点M作MD⊥x轴于点D,则OD=3,MD=2.
已知∠MED=∠OEF=45°,则△MDE与△OEF均为等腰直角三角形,
∴DE=MD=2,OE=OF=1,
∴E(1,0),F(0,-1).
∵M(3,2),F(0,-1),
∴线段MF中点坐标为(
,
).
直线y=-x+b过点(
,
),则
=-
+b,解得:b=2,
2=1+t,
解得t=1.
∵M(3,2),E(1,0),
∴线段ME中点坐标为(2,1).
直线y=-x+b过点(2,1),则1=-2+b,解得:b=3,
3=1+t,
解得t=2.
故点M关于l的对称点,当t=1时,落在y轴上,当t=2时,落在x轴上.
由题意,得b>0,t≥0,b=1+t.
当t=3时,b=4,
故y=-x+4.
(2)当直线y=-x+b过点M(3,2)时,
2=-3+b,
解得:b=5,
5=1+t,
解得t=4.
当直线y=-x+b过点N(4,4)时,
4=-4+b,
解得:b=8,
8=1+t,
解得t=7.
故若点M,N位于l的异侧,t的取值范围是:4<t<7.
(3)如右图,过点M作MF⊥直线l,交y轴于点F,交x轴于点E,则点E、F为点M在坐标轴上的对称点.
过点M作MD⊥x轴于点D,则OD=3,MD=2.
已知∠MED=∠OEF=45°,则△MDE与△OEF均为等腰直角三角形,
∴DE=MD=2,OE=OF=1,
∴E(1,0),F(0,-1).
∵M(3,2),F(0,-1),
∴线段MF中点坐标为(
3 |
2 |
1 |
2 |
直线y=-x+b过点(
3 |
2 |
1 |
2 |
1 |
2 |
3 |
2 |
2=1+t,
解得t=1.
∵M(3,2),E(1,0),
∴线段ME中点坐标为(2,1).
直线y=-x+b过点(2,1),则1=-2+b,解得:b=3,
3=1+t,
解得t=2.
故点M关于l的对称点,当t=1时,落在y轴上,当t=2时,落在x轴上.
看了 如图,A(0,1),M(3,...的网友还看了以下:
1、求过点(0,-4)且倾斜角为直线(√3)x+y+3=0的倾斜角的一半的直线l的方程.2、直线m 2020-04-11 …
椭圆的中心在坐标原点、焦点在坐标轴上、该椭圆过点(0,4)、且长轴长是短轴长的2倍、求椭圆的标准方 2020-05-16 …
将一张坐标纸折叠一次使得点(0.2)与点(0.4重合,点(7.3)与点(m,n)重合,则m+2n= 2020-05-22 …
y=根号(x^2+4)-根号(x^2+2x+10)就是点P(x,0)到点A(0,-4)和点B(-1 2020-06-03 …
如图已知抛物线Y=1/2X+bx+C经过点A(4,0)和点(0,4),交X轴于点C,过OB的中点, 2020-06-14 …
质量不计的光滑木板AB长1.6米,可绕固定点O转动,离O点0.4米的B端挂一重物G,板的另一端A用 2020-07-14 …
已知过点(0,4)斜线为—1的直线L与抛物线C:y^2=2px(p大于0),交与A,B两点,求C的 2020-07-30 …
椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为√3/2,长轴端点与短轴端点间的 2020-07-31 …
经过点(0.-4)和点(3.0)的椭圆的标准方程为 2020-08-02 …
m取任何实数时,不等式x^2-(m^2+2m-5)x+(m-3)(m^2+m-2)小于0的解包含0到 2020-11-07 …