早教吧 育儿知识 作业答案 考试题库 百科 知识分享

己知:在等腰三角形ABC中,AB=AC,AD⊥BC于点D,以AC为边作等边三角形ACE,直线BE交直线AD于点F,连接FC.(1)如图1,120°<∠BAC<180°,△ACE与△ABC在直线AC的异侧,且FC交AE于点M.①求证:

题目详情
己知:在等腰三角形ABC中,AB=AC,AD⊥BC于点D,以AC为边作等边三角形ACE,直线BE交直线AD于点F,连接FC.
(1)如图1,120°<∠BAC<180°,△ACE与△ABC在直线AC的异侧,且FC交AE于点M.
①求证:∠FEA=∠FCA;
②猜想线段FE,FA,FD之间的数量关系,并证明你的结论:
(2)当60°<∠BAC<120°,且△ACE与△ABC在直线AC的同侧时,利用图2画出图形探究线段FE,FA,FD之间的数量关系,并直接写出你的结论.
作业帮
▼优质解答
答案和解析
(1)①∵AD⊥BC,AB=AC,
∴BD=DC,
∴FB=FC,
∴∠FBC=∠FCB,
∴AB=AC,
∴∠ABC=∠ACB,
∵∠FBA=∠FCA,
∵以AC为边作等边三角形ACE,
∴AE=AC=AB,
∴∠ABF=∠AEF,
∴∠ACF=∠AEF,
即:∠FEA=∠FCA;
②结论:EF=2FD-AF,
∵以AC为边作等边三角形ACE,
∴∠EAC=60°,
由①有,∠ACF=∠AEF,
∴∠EFC=∠EAC=60°,
由①得,BF=CF,FD⊥BC,
∴∠BFD=∠CFD,
∵∠BFD+∠CFD+∠EFC=180°,
∴∠BFD=∠CFD=
180°-∠EFC
2
=60°,
∴∠FCD=90°-∠CFD=30°,
∴∠ACD+∠ACF=30°,
∴∠ECF=∠ECA-∠ACF=60°-∠ACF=60°-(30°-∠ACD)=30°+∠ACD,
如图1,
作业帮
延长AD,在AD上截取AD=DK,连接CK,
∵AD⊥BC,
∴∠ACD=∠KCD,CA=CK
∴∠FCK=∠FCD+∠KCD=∠ACF+∠ACD+∠KCD=30°+∠KCD=30°+∠ACD,
∴∠FCK=∠ECF,
∵AC=CE,AC=CK,
∴CK=CE,
在△CFE和△CFK中,
CF=CF
∠FCE=∠FCK
CE=CK

∴△CFE≌△CFK,
∴FE=FK=FD+DK,
∵AD=DK,
∴FE=2FD-AF;
(2)②结论:EF=2FA-FD,
如图2,
作业帮
同(1)的方法得出∠FCK=∠ECF,
∵AC=CE,AC=CK,
∴CK=CE,
在△CFE和△CFK中,
CF=CF
∠FCE=∠FCK
CE=CK

∴△CFE≌△CFK,
∴FE=FK=FD+DK,
∵AD=DK,
∴FE=2FA-FD;