早教吧作业答案频道 -->数学-->
己知:在等腰三角形ABC中,AB=AC,AD⊥BC于点D,以AC为边作等边三角形ACE,直线BE交直线AD于点F,连接FC.(1)如图1,120°<∠BAC<180°,△ACE与△ABC在直线AC的异侧,且FC交AE于点M.①求证:
题目详情
己知:在等腰三角形ABC中,AB=AC,AD⊥BC于点D,以AC为边作等边三角形ACE,直线BE交直线AD于点F,连接FC.
(1)如图1,120°<∠BAC<180°,△ACE与△ABC在直线AC的异侧,且FC交AE于点M.
①求证:∠FEA=∠FCA;
②猜想线段FE,FA,FD之间的数量关系,并证明你的结论:
(2)当60°<∠BAC<120°,且△ACE与△ABC在直线AC的同侧时,利用图2画出图形探究线段FE,FA,FD之间的数量关系,并直接写出你的结论.
(1)如图1,120°<∠BAC<180°,△ACE与△ABC在直线AC的异侧,且FC交AE于点M.
①求证:∠FEA=∠FCA;
②猜想线段FE,FA,FD之间的数量关系,并证明你的结论:
(2)当60°<∠BAC<120°,且△ACE与△ABC在直线AC的同侧时,利用图2画出图形探究线段FE,FA,FD之间的数量关系,并直接写出你的结论.
▼优质解答
答案和解析
(1)①∵AD⊥BC,AB=AC,
∴BD=DC,
∴FB=FC,
∴∠FBC=∠FCB,
∴AB=AC,
∴∠ABC=∠ACB,
∵∠FBA=∠FCA,
∵以AC为边作等边三角形ACE,
∴AE=AC=AB,
∴∠ABF=∠AEF,
∴∠ACF=∠AEF,
即:∠FEA=∠FCA;
②结论:EF=2FD-AF,
∵以AC为边作等边三角形ACE,
∴∠EAC=60°,
由①有,∠ACF=∠AEF,
∴∠EFC=∠EAC=60°,
由①得,BF=CF,FD⊥BC,
∴∠BFD=∠CFD,
∵∠BFD+∠CFD+∠EFC=180°,
∴∠BFD=∠CFD=
=60°,
∴∠FCD=90°-∠CFD=30°,
∴∠ACD+∠ACF=30°,
∴∠ECF=∠ECA-∠ACF=60°-∠ACF=60°-(30°-∠ACD)=30°+∠ACD,
如图1,
延长AD,在AD上截取AD=DK,连接CK,
∵AD⊥BC,
∴∠ACD=∠KCD,CA=CK
∴∠FCK=∠FCD+∠KCD=∠ACF+∠ACD+∠KCD=30°+∠KCD=30°+∠ACD,
∴∠FCK=∠ECF,
∵AC=CE,AC=CK,
∴CK=CE,
在△CFE和△CFK中,
,
∴△CFE≌△CFK,
∴FE=FK=FD+DK,
∵AD=DK,
∴FE=2FD-AF;
(2)②结论:EF=2FA-FD,
如图2,
同(1)的方法得出∠FCK=∠ECF,
∵AC=CE,AC=CK,
∴CK=CE,
在△CFE和△CFK中,
,
∴△CFE≌△CFK,
∴FE=FK=FD+DK,
∵AD=DK,
∴FE=2FA-FD;
∴BD=DC,
∴FB=FC,
∴∠FBC=∠FCB,
∴AB=AC,
∴∠ABC=∠ACB,
∵∠FBA=∠FCA,
∵以AC为边作等边三角形ACE,
∴AE=AC=AB,
∴∠ABF=∠AEF,
∴∠ACF=∠AEF,
即:∠FEA=∠FCA;
②结论:EF=2FD-AF,
∵以AC为边作等边三角形ACE,
∴∠EAC=60°,
由①有,∠ACF=∠AEF,
∴∠EFC=∠EAC=60°,
由①得,BF=CF,FD⊥BC,
∴∠BFD=∠CFD,
∵∠BFD+∠CFD+∠EFC=180°,
∴∠BFD=∠CFD=
180°-∠EFC |
2 |
∴∠FCD=90°-∠CFD=30°,
∴∠ACD+∠ACF=30°,
∴∠ECF=∠ECA-∠ACF=60°-∠ACF=60°-(30°-∠ACD)=30°+∠ACD,
如图1,
延长AD,在AD上截取AD=DK,连接CK,
∵AD⊥BC,
∴∠ACD=∠KCD,CA=CK
∴∠FCK=∠FCD+∠KCD=∠ACF+∠ACD+∠KCD=30°+∠KCD=30°+∠ACD,
∴∠FCK=∠ECF,
∵AC=CE,AC=CK,
∴CK=CE,
在△CFE和△CFK中,
|
∴△CFE≌△CFK,
∴FE=FK=FD+DK,
∵AD=DK,
∴FE=2FD-AF;
(2)②结论:EF=2FA-FD,
如图2,
同(1)的方法得出∠FCK=∠ECF,
∵AC=CE,AC=CK,
∴CK=CE,
在△CFE和△CFK中,
|
∴△CFE≌△CFK,
∴FE=FK=FD+DK,
∵AD=DK,
∴FE=2FA-FD;
看了 己知:在等腰三角形ABC中,...的网友还看了以下:
(2014•洛阳二模)已知椭圆E:x2a2+y2b2=1(a>b>0)的左右焦点分别是F1,F2, 2020-05-15 …
如图,平行四边形ABCD中,AB=5,BC=10,BC边上的高AM=4,E为BC边上的一个动点(不 2020-05-20 …
如图,在平面直角坐标系中有一矩形ABCD,其中A(0,0),B(8,0),D(0,4),若将△AB 2020-07-20 …
如图,长方形ABCD中,∠DAB=∠B=∠C=∠D=90°,AD=BC=8,AB=CD=17.点E 2020-07-20 …
如图:直线y=-x+18分别与x轴、y轴交于A、B两点;直线y=2x分别与AB交于C点,与过点A且 2020-07-20 …
如图,已知抛物线y2=2px(p>0)上点(2,a)到焦点F的距离为3,直线l:my=x+t(t≠ 2020-07-25 …
在等边△ABC中,AB=2,点P为AB边上任一点,过点P作PE垂直BC于E,过E作EF垂直AC于F 2020-07-30 …
如图所示,当地球上昼半球与东半球重合时,回答下题。(1)此时太阳直射点的经纬度是[]A.70°E,0 2020-11-10 …
(2014•苏州模拟)如图,直线y=-34x+6分别与x轴、y轴交于A、B两点;直线y=54x与AB 2020-11-12 …
(2013•宿迁)如图,在梯形ABCD中,AB∥DC,∠B=90°,且AB=10,BC=6,CD=2 2020-11-12 …