早教吧作业答案频道 -->数学-->
已知,△ABC为等边三角形,点D为直线BC上一动点(点D不与B、C重合).以AD为边作菱形ADEF,使∠DAF=60°,连接CF.(1)如图1,当点D在边BC上时,①求证:∠ADB=∠AFC;②请直接判断结论∠AFC=
题目详情
已知,△ABC为等边三角形,点D为直线BC上一动点(点D不与B、C重合).以AD为边作菱形ADEF,使∠DAF=60°,连接CF.
(1)如图1,当点D在边BC上时,
①求证:∠ADB=∠AFC;②请直接判断结论∠AFC=∠ACB+∠DAC是否成立;
(2)如图2,当点D在边BC的延长线上时,其他条件不变,结论∠AFC=∠ACB+∠DAC是否成立?请写出∠AFC、∠ACB、∠DAC之间存在的数量关系,并写出证明过程;
(3)如图3,当点D在边CB的延长线上时,且点A、F分别在直线BC的异侧,其他条件不变,请补全图形,并直接写出∠AFC、∠ACB、∠DAC之间存在的等量关系.
(1)如图1,当点D在边BC上时,
①求证:∠ADB=∠AFC;②请直接判断结论∠AFC=∠ACB+∠DAC是否成立;
(2)如图2,当点D在边BC的延长线上时,其他条件不变,结论∠AFC=∠ACB+∠DAC是否成立?请写出∠AFC、∠ACB、∠DAC之间存在的数量关系,并写出证明过程;
(3)如图3,当点D在边CB的延长线上时,且点A、F分别在直线BC的异侧,其他条件不变,请补全图形,并直接写出∠AFC、∠ACB、∠DAC之间存在的等量关系.
▼优质解答
答案和解析
(1)①证明:∵△ABC为等边三角形,
∴AB=AC,∠BAC=60°,
∵∠DAF=60°,
∴∠BAC=∠DAF,
∴∠BAD=∠CAF,
∵四边形ADEF是菱形,∴AD=AF,
在△ABD和△ACF中
AB=AC,∠BAD=∠CAF,AD=AF,
∴△ABD≌△ACF,
∴∠ADB=∠AFC,
②结论:∠AFC=∠ACB+∠DAC成立.
(2)结论∠AFC=∠ACB+∠DAC不成立.
∠AFC、∠ACB、∠DAC之间的等量关系是∠AFC=∠ACB-∠DAC.
证明:∵△ABC为等边三角形,
∴AB=AC,
∠BAC=60°,
∵∠BAC=∠DAF,
∴∠BAD=∠CAF,
∵四边形ADEF是菱形,
∴AD=AF.
在△ABD和△ACF中
AB=AC,∠BAD=∠CAF,AD=AF,
∴△ABD≌△ACF.
∴∠ADB=∠AFC.
又∵∠ACB=∠ADC+∠DAC,
∴∠AFC=∠ACB-∠DAC.
(3)补全图形如下图:
∠AFC、∠ACB、∠DAC之间的等量关系是:∠AFC=2∠ACB-∠DAC
(或∠AFC+∠DAC+∠ACB=180°以及这两个等式的正确变式).
∴AB=AC,∠BAC=60°,
∵∠DAF=60°,
∴∠BAC=∠DAF,
∴∠BAD=∠CAF,
∵四边形ADEF是菱形,∴AD=AF,
在△ABD和△ACF中
AB=AC,∠BAD=∠CAF,AD=AF,
∴△ABD≌△ACF,
∴∠ADB=∠AFC,
②结论:∠AFC=∠ACB+∠DAC成立.
(2)结论∠AFC=∠ACB+∠DAC不成立.
∠AFC、∠ACB、∠DAC之间的等量关系是∠AFC=∠ACB-∠DAC.
证明:∵△ABC为等边三角形,
∴AB=AC,
∠BAC=60°,
∵∠BAC=∠DAF,
∴∠BAD=∠CAF,
∵四边形ADEF是菱形,
∴AD=AF.
在△ABD和△ACF中
AB=AC,∠BAD=∠CAF,AD=AF,
∴△ABD≌△ACF.
∴∠ADB=∠AFC.
又∵∠ACB=∠ADC+∠DAC,
∴∠AFC=∠ACB-∠DAC.
(3)补全图形如下图:
∠AFC、∠ACB、∠DAC之间的等量关系是:∠AFC=2∠ACB-∠DAC
(或∠AFC+∠DAC+∠ACB=180°以及这两个等式的正确变式).
看了 已知,△ABC为等边三角形,...的网友还看了以下:
下列关于知识管理的叙述,不确切的是( )。A.知识管理包括建立知识库B.知识管理促进员工的知识交流 2020-05-27 …
歌德说:“知之尚需用之,思之尤应为之。”其中的“知之尚需用之”强调()A.用是知的源泉B.知用为动 2020-06-09 …
知识的学习过程包括哪几个方面A知识准备B知识理解C知识巩固D知识复习E知识运用 2020-06-17 …
下列说法属于唯物主义知行观的是A.知先行后B.知行合一c.行先知后D.知行终始不相离E.知之不若行 2020-07-06 …
下列语句朗读停顿不正确的一项是A0士/不可以/不弘毅B知之/为知之,不知/为不知,是/知也C思/而 2020-07-14 …
多选:孙中山先生指出,人的认识过程是“以行而求知,因知以进行”“行其所不知以致其所知”“因其已知而 2020-07-23 …
对“知人者智,自知者明”认识错误的是()A.人应该在多重比较中认识自己B.知人与自知都是很困难的事C 2020-11-02 …
已知A={x|y=√1-2x+2x-1\√x+2},B={y|y=x的平方-2x-1},试用区间表示 2020-11-03 …
对“知识改变命运”这句话的正确理解是()A.知识可以改变所有人的命运B.知识是万能的,可以改变人的一 2020-11-27 …
一个直角三角形底边长为B高为A斜长为C知道AB求C知道AC求B知道BC求A的公式是什么.同上换成锐角 2021-02-05 …