早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知△ABC,分别以AB、AC为边作△ABD和△ACE,且AD=AB,AC=AE,∠DAB=∠CAE,连接DC与BE,G、F分别是DC与BE的中点.(1)如图1,若∠DAB=60°,则∠AFG=;(2)如图2,若∠DAB=90°,则∠AFG=;

题目详情
已知△ABC,分别以AB、AC为边作△ABD和△ACE,且AD=AB,AC=AE,∠DAB=∠CAE,连接DC与BE,G、F分别是DC与BE的中点.

(1)如图1,若∠DAB=60°,则∠AFG=______;
(2)如图2,若∠DAB=90°,则∠AFG=______;
(3)如图3,若∠DAB=α,试探究∠AFG与α的数量关系,并给予证明.
▼优质解答
答案和解析
(1)连接AG.

∵∠DAB=∠CAE,
∴∠DAB+∠BAC=∠CAE+∠BAC,
∴∠DAC=∠BAE.
在△ADC和△ABE中,
AD=AB
∠DAC=∠BAE
AC=AE

∴△ADC≌△ABE(SAS),
∴DC=BE,∠ADC=∠ABE.AD=AB.
∵G、F分别是DC与BE的中点,
∴DG=
1
2
DC,BF=
1
2
BE,
∴DG=BF.
在△ADG和△ABF中,
AD=AB
∠ADC=∠ABE
DG=BF

∴△ADG≌△ABF(SAS),
∴AG=AF,∠DAG=∠BAF,
∴∠AGF=∠AFG,∠DAG-∠BAG=∠BAF-∠BAG,
∴∠DAB=∠GAF.
∵∠DAB=60°,
∴∠GAF=60°.
∵∠GAF+∠AFG+∠AGF=180°,
∴∠AFG=60°;
(2)∵∠DAB=90°,∠DAB=∠GAF,(已证)
∴∠GAF=90°,
∵AG=AF,
∴∠AFG=
1
2
(180°-90°)=45°;
(3)∵∠DAB=α,∠DAB=∠GAF,(已证)
∴∠GAF=α,
∵AG=AF,
∴∠AFG=
1
2
(180°-α);
故答案为 60°,45°,
1
2
(180°-α).