早教吧作业答案频道 -->数学-->
设F(x)在区间[a,b]上连续,(a,b)内可导,且f(a)=f(b)=1,证明存在,ξ,η∈(a,b)使e^η-ξ乘以[f(η)+f'(η)]=1
题目详情
设F(x)在区间[a,b]上连续,(a,b)内可导,且f(a)=f(b)=1,证明存在,ξ,η∈(a,b)使e^η-ξ 乘以[f(η)+f'(η)]=1
▼优质解答
答案和解析
构造函数F(X)=e^Xf(X),G(X)=e^X
F(a)=e^a,F(b)=e^b;G(a)=e^a,G(b)=e^b.
由拉格朗日中值定理:必存在一点η属于(a,b),使F'(η)=[F(b)-F(a)]/(b-a),同理,也有一点ξ属于(a,b),使G'(ξ)=[G(b)-G(a)]/(b-a),而[F(b)-F(a)]/(b-a)=)=[G(b)-G(a)]/(b-a),=(e^b-e^a)/(b-a),所以有F'(η)=G'(ξ).而F'(η)=e^η[f(η)+f'(η)],G'(ξ)=e^ξ.
然后整理一下就得证了
F(a)=e^a,F(b)=e^b;G(a)=e^a,G(b)=e^b.
由拉格朗日中值定理:必存在一点η属于(a,b),使F'(η)=[F(b)-F(a)]/(b-a),同理,也有一点ξ属于(a,b),使G'(ξ)=[G(b)-G(a)]/(b-a),而[F(b)-F(a)]/(b-a)=)=[G(b)-G(a)]/(b-a),=(e^b-e^a)/(b-a),所以有F'(η)=G'(ξ).而F'(η)=e^η[f(η)+f'(η)],G'(ξ)=e^ξ.
然后整理一下就得证了
看了 设F(x)在区间[a,b]上...的网友还看了以下:
两个可导函数乘积是否可导?为什么?设f(x)在[a.b]上连续,且对所有那些在[a,b]上满足附加 2020-05-13 …
设f(x0在[a,b]单调连续,(a,b)可导,a=f(a)<f(b)=b求证:存在ξi∈(a,b 2020-05-14 …
求两函数极限区间的题目1.设f(x)在[0,2a]上连续且发f(0)=f(2a)证明:至少存在一点 2020-06-05 …
一道高数函数连续性的问题!谢谢!设f(x)在x0连续,g(x)在x0不连续,则在x0处()A.f( 2020-06-06 …
设f(x)在[a,b]上连续且可导,求证存在一点ξ∈(a,b),使f(b)-f(设f(x)在[a, 2020-07-13 …
数学分析判断题设f(x)在[a,b]上连续,且在x1∈(a,b)处取得最小值,则存在a>0,使得数 2020-07-31 …
设y=f(x)在区间(a,b)内连续,则f(x)在区间(a,b)内()?A.有界B.无界C.设y= 2020-07-31 …
设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(a)=f(b)=0.设函数 2020-08-01 …
设f(x)在[a,b]上连续,在(a,b)内二阶可导,又设连接(a,f(a)),(b,f(b))两点 2020-11-03 …
为宣传“09连云港之夏--连岛旅游度假区”,连云港电视台摄制组乘船往返于大沙湾(A)、苏马湾(B)两 2020-11-08 …