早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,分别以△ABC的边AB、AC为边向形外作正△ABD和正△ACE,且DF∥AE,EF∥AD.(1)当∠BAC满足什么条件时,四边形ADFE为矩形?(2)当∠BAC满足什么条件时,四边形ADFE不存在?(3)当△ABC

题目详情
如图,分别以△ABC的边AB、AC为边向形外作正△ABD和正△ACE,且DF∥AE,EF∥AD.
作业帮
(1)当∠BAC满足什么条件时,四边形ADFE为矩形?
(2)当∠BAC满足什么条件时,四边形ADFE不存在?
(3)当△ABC满足什么条件时,四边形ADFE为菱形?
(4)当△ABC满足什么条件时,四边形ADFE为正方形?
(以上4小题,都不需说明理由)
▼优质解答
答案和解析
∵DF∥AE,EF∥AD,
∴四边形ADFE是平行四边形,
∵△ABD与△ACE是等边三角形,
∴AD=AB,AE=AC,∠DAB=∠EAC=60°,
(1)当∠BAC=150°时,
理由:∵∠DAE=360°-∠BAC-∠DAB-∠EAC=90°,
∴∠BAC=150°,四边形ADFE为矩形.
(2)当∠BAC=60°时,平行四边形ADFE不存在.
理由:∵∠DAE=∠DAB+∠BAC+∠EAC=60°+60°+60°=180°,
∴D,A,E共线,
∴平行四边形ADFE不存在.
(3)当AB=AC时,平行四边形ADFE是菱形.
理由:∵AD=AB,AE=AC,AB=AC,
∴AD=AE,
∵四边形ADFE是平行四边形,
∴平行四边形ADFE是菱形.
(3)AB=AC时,且∠BAC=150°,四边形ADFE为正方形.
理由:∵AD=AB,AE=AC,AB=AC,
∴AD=AE,
∵四边形ADFE是平行四边形,
∴平行四边形ADFE是菱形.
∵∠BAC=150°,
∴∠DAE=90°,
∴四边形ADFE为正方形.