早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知f(x)均是连续函数),证明:∫(0,2a)f(x)dx=∫(0,a)[f(x)+f(2a-x)]dx.

题目详情
已知f(x)均是连续函数),证明:∫(0,2a)f(x)dx=∫(0,a)[f(x)+f(2a-x)]dx.
▼优质解答
答案和解析
令t=2a-x,则x:0→a,有t:2a→a.又dt= -dx,即dx=-dt.
∫(0,a)f(2a-x)dx= -∫(2a,a)f(t)dt= -∫(2a,a)f(x)dx=∫(a,2a)f(x)dx
所以,∫(0,a)[f(x)+f(2a-x)]dx=,∫(0,a)f(x)dx+∫(0,a)f(2a-x)dx=∫(0,a)f(x)dx+∫(a,2a)f(x)dx=∫(0,2a)f(x)dx
故∫(0,2a)f(x)dx=∫(0,a)[f(x)+f(2a-x)]dx