早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,已知直线y=3x-3分别交x轴、y轴于A、B两点,抛物线y=x2+bx+c经过A、B两点,点C是抛物线与x轴的另一个交点(与A点不重合).(1)求抛物线的解析式;(2)求△ABC的面积;(3)在

题目详情
如图,已知直线y=3x-3分别交x轴、y轴于A、B两点,抛物线y=x 2 +bx+c经过A、B两点,点C是抛物线与x轴的另一个交点(与A点不重合).
(1)求抛物线的解析式;
(2)求△ABC的面积;
(3)在抛物线的对称轴上,是否存在点M,使△ABM为等腰三角形?若不存在,请说明理由;若存在,求出点M的坐标.
▼优质解答
答案和解析
(1)∵直线y=3x-3分别交x轴、y轴于A、B两点,
∴可得A(1,0),B(0,-3),
把A、B两点的坐标分别代入y=x 2 +bx+c得:
1+b+c=0
c=-3

解得:
b=2
c=-3

∴抛物线解析式为:y=x 2 +2x-3.

(2)令y=0得:0=x 2 +2x-3,
解得:x 1 =1,x 2 =-3,
则C点坐标为:(-3,0),AC=4,
故可得S △ABC =
1
2
AC×OB=
1
2
×4×3=6.

(3)存在,理由如下:
抛物线的对称轴为:x=-1,假设存在M(-1,m)满足题意:
讨论:
①当MA=AB时,
∵OA=1,OB=3,
∴AB=
10

2 2 + m 2
=
10

解得: m=±
6

∴M 1 (-1,
6
),M 2 (-1,-
6
);
②当MB=BA时,
1 2 + (m+3) 2
=
10

解得:M 3 =0,M 4 =-6,
∴M 3 (-1,0),M 4 (-1,-6)(不合题意舍去),
③当MB=MA时,
2 2 + m 2
=
1 2 + (m+3) 2

解得:m=-1,
∴M 5 (-1,-1),
答:共存在4个点M 1 (-1,
6
),M 2 (-1,-
6
),M 3 (-1,0),M 4 (-1,-1)使△ABM为等腰三角形.