早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图①,CA=CB,CD=CE,∠ACB=∠DCE=α,AD、BE相交于点M,连接CM.(1)求证:BE=AD;(2)用含α的式子表示∠AMB的度数;(3)当α=90°时,取AD,BE的中点分别为点P、Q,连接CP,CQ,PQ,如图②,

题目详情
如图①,CA=CB,CD=CE,∠ACB=∠DCE=α,AD、BE相交于点M,连接CM.
(1)求证:BE=AD;
(2)用含α的式子表示∠AMB的度数;
(3)当α=90°时,取AD,BE的中点分别为点P、Q,连接CP,CQ,PQ,如图②,判断△CPQ的形状,并加以证明.
作业帮
▼优质解答
答案和解析
(1)如图1,∵∠ACB=∠DCE=α,
∴∠ACD=∠BCE,
在△ACD和△BCE中,
CA=CB;
∠ACD=∠BCE
CD=CE

∴△ACD≌△BCE(SAS),
∴BE=AD;

(2)如图1,∵△ACD≌△BCE,
∴∠CAD=∠CBE,
∵△ABC中,∠BAC+∠ABC=180°-α,
∴∠BAM+∠ABM=180°-α,
∴△ABM中,∠AMB=180°-(180°-α)=α;

(3)△CPQ为等腰直角三角形.
证明:如图2,由(1)可得,BE=AD,
∵AD,BE的中点分别为点P、Q,
∴AP=BQ,
∵△ACD≌△BCE,
∴∠CAP=∠CBQ,
在△ACP和△BCQ中,
CA=CB
∠CAP=∠CBQ
AP=BQ

∴△ACP≌△BCQ(SAS),
∴CP=CQ,且∠ACP=∠BCQ,
又∵∠ACP+∠PCB=90°,
∴∠BCQ+∠PCB=90°,
∴∠PCQ=90°,
∴△CPQ为等腰直角三角形.