早教吧作业答案频道 -->数学-->
不等式的证明x,y,z为正的实数求证(xy+yz+zx)[1/(x+y)^2+1/(y+z)^2+1/(x+z)^2]>=9/4
题目详情
不等式的证明
x,y,z为正的实数
求证
(xy+yz+zx)[1/(x+y)^2+1/(y+z)^2+1/(x+z)^2]>=9/4
x,y,z为正的实数
求证
(xy+yz+zx)[1/(x+y)^2+1/(y+z)^2+1/(x+z)^2]>=9/4
▼优质解答
答案和解析
s=(3/2)^2-4(xy/4+yz/4+zx/4)[1/(x+y)^2+1/(y+z)^2+1/(x+z)^2]
这就让我们想到用构造函数法来证,虽麻烦了点,但思路确是很清晰的
f(t)=[1/(x+y)^2+1/(y+z)^2+1/(x+z)^2]*t^2-3/2*t+(xy/4+yz/4+zx/4)
=[1/(x+y)^2*t^2-1/2*t+xy/4]
+[1/(y+z)^2*t^2-1/2*t+yz/4]
+[1/(x+z)^2*t^2-1/2*t+zx/4]
因为(x+y)^2>=4xy
(1/2)^2-4*(xy/4)*1/(x+y)^2=1/4-xy/(x+y)^2
这就让我们想到用构造函数法来证,虽麻烦了点,但思路确是很清晰的
f(t)=[1/(x+y)^2+1/(y+z)^2+1/(x+z)^2]*t^2-3/2*t+(xy/4+yz/4+zx/4)
=[1/(x+y)^2*t^2-1/2*t+xy/4]
+[1/(y+z)^2*t^2-1/2*t+yz/4]
+[1/(x+z)^2*t^2-1/2*t+zx/4]
因为(x+y)^2>=4xy
(1/2)^2-4*(xy/4)*1/(x+y)^2=1/4-xy/(x+y)^2
看了 不等式的证明x,y,z为正的...的网友还看了以下:
已知x,y,z∈R+,x+y+z=3①求(1/x)+(1/y)+(1/z)的最小值②证明:已知x,y 2020-03-30 …
求证:对于任意的函数f(x)、g(x)、h(x)、z(x)如果f[g(x)]=h(x)则f{z[g 2020-05-20 …
设x,y,z∈R+,求证:xyz(x+y+z+√(x^2+y^2+z^2))/(x^2+y^2+z 2020-06-02 …
1.已知x>=y>=z>0,求证(yx^2)/z+(zy^2)/x+(xz^2)/y>=x^2+y 2020-06-11 …
设a,b为不等于1的正数,并且实数x,y,z满足关系式1/x+1/y=1/z(1)当a^x=b^y 2020-06-18 …
1、已知n是大于一的正整数,求证n的4次方+4是合数.2、求不大于200的恰好有15个正约数的所有 2020-07-31 …
求一不等式证明.已知:x,y,z>=0,x+y+z=6.求证:(x+1/x)(y+1/y)(z+1/ 2020-10-31 …
高一数学题4.已知x,y,z是互不相等的正数,且x+y+z=1,求证(1/x-1)(1/y-1)(1 2020-10-31 …
1.x+y+z≠0且x/(y+z)=y/(x+y)=z/x+y,求x/(x+y+z)2.x+y+z= 2020-10-31 …
1已知x.y,z为锐角,cos²x+cos²y+cos²z=1,求证:3π/4<x+y+z<π22已 2020-10-31 …