早教吧 育儿知识 作业答案 考试题库 百科 知识分享

现有3个命题:P1:函数f(x)=lgx-|x-2|有2个零点.P2:面值为3分和5分的邮票可支付任何n(n>7,n∈N)分的邮资.P3:若a+b=c+d=2,ac+bd>4,则a、b、c、d中至少有1个为负数.那么,这3个命题

题目详情

现有3个命题:
P1:函数f(x)=lgx-|x-2|有2个零点.
P2:面值为3分和5分的邮票可支付任何n(n>7,n∈N)分的邮资.
P3:若a+b=c+d=2,ac+bd>4,则a、b、c、d中至少有1个为负数.
那么,这3个命题中,真命题的个数是(  )

A. 0

B. 1

C. 2

D. 3

▼优质解答
答案和解析
令f(x)=lgx-|x-2|=0,得到lgx=|x-2|,作业帮
作出y=lgx,y=|x-2|的图象可知,它们有2个交点,
从而函数f(x)=lgx-|x-2|有2个零点,故p1是真命题;
P2:面值为3分和5分的邮票可支付任何n(n>7,n∈N)分的邮资,是真命题.
用数学归纳法证明:
①当n=8,9,10时,由8=3+5,9=3+3+3,10=5+5,知命题成立;
②假设当n=k(k>7,n∈N)时,命题成立,则k=8+3m,或k=9+3m,或k=10+3m,m∈N*
∴当n=k+1时,则n=9+3m,或n=10+3m,或n=11+3m=8+3(m+1),m∈N*
∴当n=k+1时,命题成立.
由①②知P2:面值为3分和5分的邮票可支付任何n(n>7,n∈N)分的邮资,是真命题.
P3:若a+b=c+d=2,ac+bd>4,则a、b、c、d中至少有1个为负数,是真命题.
用反证法证明:
假设a,b,c,d没有1 个为负数,即a≥0,b≥0,c≥0,d≥0,∴ad+bc≥0,
∵a+b=c+d=2,∴(a+b)(c+d)=ac+bd+ad+bc=4,
∵ac+bd>4,∴ad+bc<0,
这与ad+bc≥0矛盾,故假设不成立,
∴若a+b=c+d=2,ac+bd>4,则a、b、c、d中至少有1个为负数,
故P3为真命题.
故选:D.