早教吧作业答案频道 -->数学-->
一道数列题,设a1=2,a2=4,数列{bn}满足:bn=a(n+1)-an,b(n+1)=2bn+2[这里的n,n+1都是下标](1)求证数列{bn+2}是等比数列(要指出首项与公比);(2)求数列{an}的通项公式
题目详情
一道数列题,
设a1=2,a2=4,数列{bn}满足:bn=a(n+1)-an,b(n+1)=2bn+2[这里的n,n+1都是下标]
(1)求证数列{bn+2}是等比数列(要指出首项与公比);
(2)求数列{an}的通项公式
设a1=2,a2=4,数列{bn}满足:bn=a(n+1)-an,b(n+1)=2bn+2[这里的n,n+1都是下标]
(1)求证数列{bn+2}是等比数列(要指出首项与公比);
(2)求数列{an}的通项公式
▼优质解答
答案和解析
(1) B(n+1)=2B(n)+2
=>B(n+1)+2 = 2( B(n)+2 )
所以: B(n)+2 是等比数列
公差为2, 首项 B1+2 = 4
(2) B(n) = A(n+1) - A(n)
B(n-1) = A(n) - A(n-1)
.
B(1) = A(2) - A(1)
上面n个式子相加可得
B(1)+B(2)+...+B(n) = A(n+1)-A(1)
=>( B(1)+2 )+( B(2)+2 )+ ... +( B(n)+2 )
= A(n+1) - A(1) + 2*n
=>4 + 8 + 16 + ... + 4*2^(n-1)
= A(n+1) - 2 + 2*n
=> A(n+1) = 2^(n+2) - 2n - 2
=> A(n) = 2^(n+1) - 2n
=>B(n+1)+2 = 2( B(n)+2 )
所以: B(n)+2 是等比数列
公差为2, 首项 B1+2 = 4
(2) B(n) = A(n+1) - A(n)
B(n-1) = A(n) - A(n-1)
.
B(1) = A(2) - A(1)
上面n个式子相加可得
B(1)+B(2)+...+B(n) = A(n+1)-A(1)
=>( B(1)+2 )+( B(2)+2 )+ ... +( B(n)+2 )
= A(n+1) - A(1) + 2*n
=>4 + 8 + 16 + ... + 4*2^(n-1)
= A(n+1) - 2 + 2*n
=> A(n+1) = 2^(n+2) - 2n - 2
=> A(n) = 2^(n+1) - 2n
看了 一道数列题,设a1=2,a2...的网友还看了以下:
已知数列a(n)为等比数列,a(4)=16,q=2,数列b(n)前N项和s(n)=1/2*n的平方 2020-05-13 …
已知函数f(x)=x/(2*x+1),数列{an}满足a[1]=1/2,a[n+1]=f(a[n] 2020-05-13 …
数列问题a1=a,数列bn满足2bn=(n+1)an,bn大等于b5成立,求实数a的范围.记数列a 2020-05-23 …
求高手解一道数列通项题a(n+1)=1/[a(n)+2a(1)]=3/4小括号里面是下标.这题有点 2020-06-05 …
已知a1=1,an=n(a(n+1)-an),则数列{an}的通项公式an为————(1,n,n+ 2020-06-06 …
已知数列{an}是首项a1=a,公差为2的等差数列,数列{bn}满足2bn=(n+1)an若对任意 2020-06-11 …
已知数列{an}是首项a1=a,公差为2的等差数列;数列{bn}满足2bn=(n+1)an(2)若 2020-07-09 …
高中数学含有变量的递推公式A1=1,A(n+1)=2An+3^n求{An}的通项公式A1=1,3* 2020-08-01 …
自认数列NB的请进已知一个数列的递推式为ka(n-1)+d=a(n)求证它的通项公式为a(n)=a( 2020-12-10 …
S(n)是数列{a(n)}的前n项和,已知4S(n)=a(n)^2+2a(n)-3.求a(n)通项S 2020-12-17 …