早教吧作业答案频道 -->其他-->
定义:设函数f(x)在(a,b)内可导,若f′(x)为(a,b)内的增函数,则称f(x)为(a,b)内的下凸函数.(Ⅰ)已知f(x)=ex-ax3+x在(0,+∞)内为下凸函数,试求实数a的取值范围;
题目详情
定义:设函数f(x)在(a,b)内可导,若f′(x)为(a,b)内的增函数,则称f(x)为(a,b)内的下凸函数.
(Ⅰ)已知f(x)=ex-ax3+x在(0,+∞)内为下凸函数,试求实数a的取值范围;
(Ⅱ)设f(x)为(a,b)内的下凸函数,求证:对于任意正数λ1,λ2,λ1+λ2=1,
不等式f(λ1x1+λ2x2)≤λ1f(x1)+λ2f(x2)对于任意的x1,x2∈(a,b)恒成立.
(Ⅰ)已知f(x)=ex-ax3+x在(0,+∞)内为下凸函数,试求实数a的取值范围;
(Ⅱ)设f(x)为(a,b)内的下凸函数,求证:对于任意正数λ1,λ2,λ1+λ2=1,
不等式f(λ1x1+λ2x2)≤λ1f(x1)+λ2f(x2)对于任意的x1,x2∈(a,b)恒成立.
▼优质解答
答案和解析
(I)f(x)=ex-ax3+x在(0,+∞)内为下凸函数等价于x∈(0,+∞)时,f′(x)=ex-3ax2+1为增函数;
所以x∈(0,+∞)时,[f′(x)]′=ex-6ax≥0恒成立,即a≤
恒成立
设g(x)=
,g′(x)=
,
令g′(x)=0,得x=1,且当0<x<1时,g′(x)<0;当x>1时,g′(x)>0.
所以在x=1时,g(x)取得最小值为
,所以a≤
(II)证明:根据上凸函数的定义“f(x)是定义在闭区间[a,b]上的函数,若任意x,y∈[a,b]和任意λ∈(0,1),有f(λx+(1-λ)y)≤λf(x)+(1-λ)f(y)成立”
取x=x1,y=x2,λ=λ1,1-λ=1-λ1=λ2,而任意正数λ1,λ2,λ1+λ2=1,x1、x2∈(a,b)
得不等式f(λ1x1+λ2x2)≤λ1f(x1)+λ2f(x2)对于任意的x1,x2∈(a,b)恒成立.
所以x∈(0,+∞)时,[f′(x)]′=ex-6ax≥0恒成立,即a≤
ex |
6x |
设g(x)=
ex |
6x |
ex(x−1) |
6x2 |
令g′(x)=0,得x=1,且当0<x<1时,g′(x)<0;当x>1时,g′(x)>0.
所以在x=1时,g(x)取得最小值为
e |
6 |
e |
6 |
(II)证明:根据上凸函数的定义“f(x)是定义在闭区间[a,b]上的函数,若任意x,y∈[a,b]和任意λ∈(0,1),有f(λx+(1-λ)y)≤λf(x)+(1-λ)f(y)成立”
取x=x1,y=x2,λ=λ1,1-λ=1-λ1=λ2,而任意正数λ1,λ2,λ1+λ2=1,x1、x2∈(a,b)
得不等式f(λ1x1+λ2x2)≤λ1f(x1)+λ2f(x2)对于任意的x1,x2∈(a,b)恒成立.
看了 定义:设函数f(x)在(a,...的网友还看了以下:
在多元函数中一阶偏导数连续则二阶偏导数也连续吗?高数书上有定理:混合偏导数在它们定义域内连续则相等 2020-05-13 …
IF函数求指导ABCDF11020302302010如上所示,在F单元格内写入IF公式,需要两组公 2020-06-02 …
IF函数求救,指导!-ABCDF11020302302010如上所示,在F单元格内写入IF公式,需 2020-06-02 …
已知函数f(x)是定义在[-2,2]上的奇函数,且在[0,2]内有3个零点,则函数在[-2,2]已 2020-06-09 …
对于函数f(x),若在定义域内存在实数x,满足f(-x)=-f(x),则称f(x)为“局部奇函数” 2020-06-09 …
几条工数判断题求详解设函数f(x)在点x0的某邻域内有定义,且f'(x0)=0,f''(x0)>0 2020-07-29 …
(高数问题)下列命题正确的是:请教每一个选项的分析,A;在区间(a,b)内有f(x)>g(x),则 2020-07-31 …
数学判断题,求教.1.函数y=lnC,则y'=1/c2.若函数f(x)在X1上点连续,则函数f(x 2020-08-02 …
设函数f(x)在区间(a.b)内具有二阶导数.如果x∈(a.b)时恒有f(x)>0则f(x)在(a. 2020-12-22 …
1、求2、求设在连续,则3、求设,则4、求5、求=6、求7、求设在点的邻域内有定义:若对该领域内任何 2021-02-13 …