早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,已知AB∥CD,BE平分∠ABD,DE平分∠BDC,H是直线CD上一动点,(不与点D重合),BI平分∠HBD,写出∠EBI与∠HBD的数量关系,并说明理由.

题目详情
如图,已知AB∥CD,BE平分∠ABD,DE平分∠BDC,H是直线CD上一动点,(不与点D重合),BI平分∠HBD,写出∠EBI与∠HBD的数量关系,并说明理由.
作业帮
▼优质解答
答案和解析
作业帮 ∠BHD=2∠EBI或∠BHD=180°-2∠EBI.
理由:∵BE平分∠ABD,
∴∠ABD=2∠EBD,
∵BI平分∠HBD,
∴∠HBD=2∠IBD,
如图1,点H在点D的左边时,∠ABH=∠ABD-∠HBD,
∠EBI=∠EBD-∠IBD,
∴∠ABH=2∠EBI,
∵AB∥CD,
∴∠BHD=∠ABH,
∴∠BHD=2∠EBI;

如图2,点H在点D的右边时,∠ABH=∠ABD+∠HBD,
∠EBI=∠EBD+∠IBD,
∴∠ABH=2∠EBI,
∵AB∥CD,
∴∠BHD=180°-∠ABH,
∴∠BHD=180°-2∠EBI,
综上所述,∠BHD=2∠EBI或∠BHD=180°-2∠EBI.