早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知数列{an}的首项a1=1,且满足an+1=an4an+1(n∈N*).(Ⅰ)设bn=1an,求证:数列{bn}是等差数列,并求数列{an}的通项公式;(Ⅱ)设cn=bn•2n,求数列{cn}的前n项和Sn.

题目详情
已知数列{an}的首项a1=1,且满足an+1=
an
4an+1
(n∈N*).
(Ⅰ)设bn=
1
an
,求证:数列{bn}是等差数列,并求数列{an}的通项公式;
(Ⅱ)设cn=bn•2n,求数列{cn}的前n项和Sn
▼优质解答
答案和解析
(Ⅰ)∵an+1=
an
4an+1
,∴
1
an+1
=4+
1
an
,即
1
an+1
1
an
=4,∴bn+1-bn=4.
∴数列{bn}是以1为首项,4为公差的等差数列.∴
1
an
=bn=1+4(n−1)=4n-3,
∴数列{an}的通项公式为an=
1
4n−3

(Ⅱ)由(Ⅰ)知cn=bn•2n=(4n-3)2n
Sn=1×21+5×22+9×23+…+(4n−3)•2n…①
同乘以2得,2Sn=1×22+5×23+9×24+…+(4n−3)•2n+1…②
②-①得,−Sn=2−(4n−3)2n+1+4×(22+23+24+…+2n)
=2−(4n−3)2n+1+
4×22×(1−2n−1)
1−2
=2-(4n-3)2n+1+16×2n-1-16
=-14+2n+1×(4-4n+3)=-14+(7-4n)2n+1
∴数列{cn}的前n项和Sn=(4n−7)•2n+1+14