早教吧作业答案频道 -->数学-->
在平面直角坐标系中,已知点A(-2,0),B(2,0),若在坐标轴上存在点C,使得AC+BC=m,则称点C为点A,B的“m和点”.如C坐标为(0,0)时,AC+BC=4,则称C(0,0)为点A,B的“4和点”.(1
题目详情
在平面直角坐标系中,已知点A(-2,0),B(2,0),若在坐标轴上存在点C,使得AC+BC=m,则称点C为点A,B的“m和点”.如C坐标为(0,0)时,AC+BC=4,则称C(0,0)为点A,B的“4和点”.
(1)若点C为点A,B的“m和点”,且△ABC为等边三角形,求m的值;
(2)A,B的“5和点”有几个,请分别求出坐标;
(3)直接指出点A,B的“m和点”的个数情况和相应的m取值条件.
(1)若点C为点A,B的“m和点”,且△ABC为等边三角形,求m的值;
(2)A,B的“5和点”有几个,请分别求出坐标;
(3)直接指出点A,B的“m和点”的个数情况和相应的m取值条件.
▼优质解答
答案和解析
(1)∵A(-2,0),B(2,0),
∴AB=2-(-2)=4.
∵△ABC为等边三角形,
∴AC=BC=AB=4,
∴AC+BC=4+4=8,即m=8;
(2)设点C为点A,B的“5和点”.分两种情况:
①如果点C在x轴上,设C点坐标为(x,0).
∵AC+BC=5,
∴|x+2|+|x-2|=5,
当x≤-2时,-(x+2)-(x-2)=5,解得x=-2.5,所以C点坐标为(-2.5,0);
当-2<x≤2时,(x+2)-(x-2)=5,x无解;
当x>2时,(x+2)+(x-2)=5,解得x=2.5,所以C点坐标为(2.5,0);
②如果点C在y轴上,设C点坐标为(0,y).
∵AC+BC=5,
∴
+
=5,
∴
=2.5,
两边平方,得4+y2=6.25,
解得y=±1.5.
经经验,y=±1.5都是原方程的根,
所以C点坐标为(0,1.5),(0,-1.5);
综上所述,A,B的“5和点”有4个,坐标为(-2.5,0),(2.5,0),(0,1.5),(0,-1.5);
(3)∵AB=4,
∴点A,B的“m和点”的个数情况分三种情况:
①当m<4时,A,B的“m和点”没有;
②当m=4时,A,B的“m和点”有无数个;
③当m>4时,A,B的“m和点”有4个.
∴AB=2-(-2)=4.
∵△ABC为等边三角形,
∴AC=BC=AB=4,
∴AC+BC=4+4=8,即m=8;
(2)设点C为点A,B的“5和点”.分两种情况:
①如果点C在x轴上,设C点坐标为(x,0).
∵AC+BC=5,
∴|x+2|+|x-2|=5,
当x≤-2时,-(x+2)-(x-2)=5,解得x=-2.5,所以C点坐标为(-2.5,0);
当-2<x≤2时,(x+2)-(x-2)=5,x无解;
当x>2时,(x+2)+(x-2)=5,解得x=2.5,所以C点坐标为(2.5,0);
②如果点C在y轴上,设C点坐标为(0,y).
∵AC+BC=5,
∴
22+y2 |
22+y2 |
∴
22+y2 |
两边平方,得4+y2=6.25,
解得y=±1.5.
经经验,y=±1.5都是原方程的根,
所以C点坐标为(0,1.5),(0,-1.5);
综上所述,A,B的“5和点”有4个,坐标为(-2.5,0),(2.5,0),(0,1.5),(0,-1.5);
(3)∵AB=4,
∴点A,B的“m和点”的个数情况分三种情况:
①当m<4时,A,B的“m和点”没有;
②当m=4时,A,B的“m和点”有无数个;
③当m>4时,A,B的“m和点”有4个.
看了 在平面直角坐标系中,已知点A...的网友还看了以下:
二次函数的一个小问题求解已知二次函数y=ax²+bx+c(a不为0),其中a,b,c满足a+b+c 2020-05-13 …
1.用描述法表示一元二次方程的全体,应是 ( )A.{x|ax2+bx+c=0,a,b,c∈R}; 2020-05-16 …
若方程ax^2+bx+c=0(a≠0)中,系数a,b,c满足a+b+c=0和a-b+c=0,则方程 2020-05-16 …
如果A=2*2*3*C,B=2*3*5*C,A和B的最大公因数是18,那么C是多少,A和B的最小公 2020-05-21 …
若方程ax方+bx+c=0(a不等于0),a,b,c满足a+b+c=0,a-b-c=o,则方程的根 2020-07-16 …
若圆x^2+y^2+ax+by-c=0,(a,b,c不全为0)与x轴相切于原点则Aa=0,b≠0, 2020-07-20 …
三个未知数a,b,c,三个方程,求出3个未知数a+b+c=-13a+2b+c=03a-2b+c=0 2020-08-01 …
已知一元二次方程M:x2-bx-c=0和N:y2+cy+b=0(1)若方程M的两个根分别为x1=-1 2020-11-11 …
求概率的题~P(A)=0.14P(B)=0.23P(C)=0.37P(A交B)=0.08P(A交C) 2020-11-28 …
二元一次方程若方程ax²+bx+c=0(a≠0)中,a,b,c满足a+b+c=0和a-b+c=0,则 2020-12-09 …