早教吧作业答案频道 -->数学-->
在平面直角坐标系xOy中,点A的坐标为(1,0),P是第一象限内任意一点,连接PO,PA,若∠POA=m°,∠PAO=n°,则我们把(m°,n°)叫做点P的“双角坐标”.例如,点(1,1)的“双
题目详情
在平面直角坐标系xOy中,点A的坐标为(1,0),P是第一象限内任意一点,连接PO,PA,若∠POA=m°,∠PAO=n°,则我们把(m°,n°)叫做点P 的“双角坐标”.例如,点(1,1)的“双角坐标”为(45°,90°).
(1)点(
,
)的“双角坐标”为___;
(2)若点P到x轴的距离为
,则m+n的最小值为___.
(1)点(
1 |
2 |
| ||
2 |
(2)若点P到x轴的距离为
1 |
2 |
▼优质解答
答案和解析
(1)∵P(
,
),OA=1,
∴tan∠POA=
=
,tan∠PAO=
=
,
∴∠POA=60°,∠PAO=60°,
即点P的“双角坐标”为(60°,60°),
故答案为:(60°,60°);
(2)根据三角形内角和定理知若要使m+n取得最小值,即∠POA+∠PAO取得最小值,
则∠OPA需取得最大值,
如图,
∵点P到x轴的距离为
,OA=1,
∴OA中点为圆心,
为半径画圆,与直线y=
相切于点P,
在直线y=
上任取一点P′,连接P′O、P′A,P′O交圆于点Q,
∵∠OPA=∠1>∠OP′A,
此时∠OPA最大,∠OPA=90°,
∴m+n的最小值为90,
故答案为:90.
1 |
2 |
| ||
2 |
∴tan∠POA=
| ||||
|
3 |
| ||||
1-
|
3 |
∴∠POA=60°,∠PAO=60°,
即点P的“双角坐标”为(60°,60°),
故答案为:(60°,60°);
(2)根据三角形内角和定理知若要使m+n取得最小值,即∠POA+∠PAO取得最小值,
则∠OPA需取得最大值,
如图,
∵点P到x轴的距离为
1 |
2 |
∴OA中点为圆心,
1 |
2 |
1 |
2 |
在直线y=
1 |
2 |
∵∠OPA=∠1>∠OP′A,
此时∠OPA最大,∠OPA=90°,
∴m+n的最小值为90,
故答案为:90.
看了 在平面直角坐标系xOy中,点...的网友还看了以下:
已知集合A={x/x=3n+1,n∈Z}B={x/x=3n+2,n∈Z}M={x/x=6n+3,n 2020-04-05 …
已知集合A={x/x=3n+1,n∈Z}B={x/x=3n+2,n∈Z}M={x/x=6n+3,n 2020-04-05 …
1.已知:P={0,1},M={x/x包含于P},则P与M的关系为A.P∈M B.P不属于M C. 2020-05-13 …
设集合S={x|-2≤x≤3},P={x|2m≤x<m+1}满足S∩P=P≠∅(Ⅰ)求实数m的取值 2020-05-17 …
设一组初始记录关键字序列为(Q,H,C,Y,P,A,M,S,R,D,F,X),则按字母升序的第一趟 2020-07-17 …
已知a^3+2a=-2,求3a^6+12a^6-a^3+12a^2-2a-4的值是3a^6+12a 2020-07-22 …
1)变量的指针,其含义是指该变量的.A.值B.地址C.名D.一个标志2)若需要建立如图所示的存储结 2020-07-30 …
已知集合M、P、S,满足M∪P=M∪S,则()A.P=SB.M∩P=M∩SC.M∩(P∪S)=M∩ 2020-07-30 …
已知集合M.P.S,满足M∪P=M∪S,则正确的是:A.P=SB.M∩P=M∩SC.M∩(P∪S) 2020-07-30 …
已知a>b>0,全集U=R,集合M={x|b<x<a+b2},N={x|ab<x<a},P={x| 2020-07-30 …