早教吧作业答案频道 -->数学-->
数列{an}中,an>0,且{anan+1}是公比为q(q>0)的等比数列,满足anan+1+an+1an+2>an+2an+3(n∈N),则公比q的取值范围是()A.0<q<1+22B.0<q<1+52C.0<q<−1+22D.0<q<−1+52
题目详情
数列{an}中,an>0,且{anan+1}是公比为q(q>0)的等比数列,满足anan+1+an+1an+2>an+2an+3(n∈N),则公比q的取值范围是( )
A. 0<q<
B. 0<q<
C. 0<q<
D. 0<q<
A. 0<q<
1+
| ||
2 |
B. 0<q<
1+
| ||
2 |
C. 0<q<
−1+
| ||
2 |
D. 0<q<
−1+
| ||
2 |
▼优质解答
答案和解析
法1:∵{anan+1}是公比为q(q>0)的等比数列,
∴设anan+1=(a1a2)qn−1,
不等式可化为(a1a2)qn−1+(a1a2)qn>(a1a2)qn+1,
∵an>0,q>0,
∴q2-q-1<0,
解得:0<q<
;
法2:令n=1,不等式变为a1a2+a2a3>a3a4,
∴a1a2+a1a2⋅q>a1a2q2,
∵a1a2>0,∴1+q>q2,
解得:0<q<
,
故选B
∴设anan+1=(a1a2)qn−1,
不等式可化为(a1a2)qn−1+(a1a2)qn>(a1a2)qn+1,
∵an>0,q>0,
∴q2-q-1<0,
解得:0<q<
1+
| ||
2 |
法2:令n=1,不等式变为a1a2+a2a3>a3a4,
∴a1a2+a1a2⋅q>a1a2q2,
∵a1a2>0,∴1+q>q2,
解得:0<q<
1+
| ||
2 |
故选B
看了 数列{an}中,an>0,且...的网友还看了以下:
已知:f(x)=-√(4 + 1/x^2),数列{an}的前n项和为Sn,点Pn(an,-1/a( 2020-05-13 …
已知函数f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若m,n∈[-1,1],m+n≠0 2020-05-17 …
数列题证明已知:f(x)=-√(4+1/x^2),数列{an}的前n项和为Sn,点Pn(an,-1 2020-06-06 …
已知椭圆C1:x2m2+y2=1(m>1)与双曲线C2:x2n2-y2=1(n>0)的焦点重合,e 2020-07-26 …
基本不等式设数列a(n),b(n),且a(1)>b(1)>0,a(n)=(a(n-1)+b(n-1 2020-08-03 …
随机变量X,Y独立且同分布.服从于N(0,1/2).求|X-Y|的期望.我知道令Z=X+Y,随机变量 2020-10-30 …
已知椭圆C1:x2m2+y2=1(m>1)与双曲线C2:x2n2-y2=1(n>0)的焦点重合,e1 2020-10-31 …
概率设随机变量(X,Y)~N(1,0,9,16,-0.5),Z=3X-2Y,求cov(X,Y)设随机 2020-11-01 …
有一个公用电话亭,在观察使用这个电话的人的流量时,设在某一时刻有n个人正在使用电话或等待使用的概率为 2021-01-08 …
已知数列{a(n)}的前n项和为S(n),且满足a(1)=1,a(n+1)=S(n)+1(n∈N(+ 2021-02-09 …