早教吧作业答案频道 -->数学-->
已知函数f(x)=2sin(π-x)cosx.1,求f(x)的初相,对称轴,对称中心2,求f(x)单调增区间3,求f(x)的最值以及对应的x的集合4,求f(x)在区间[-π/6,π/2]上的最大值和最小值.
题目详情
已知函数f(x)=2sin(π-x)cosx.
1,求f(x)的初相,对称轴,对称中心
2,求f(x)单调增区间
3,求f(x)的最值以及对应的x的集合
4,求f(x)在区间[-π/6,π/2]上的最大值和最小值.
1,求f(x)的初相,对称轴,对称中心
2,求f(x)单调增区间
3,求f(x)的最值以及对应的x的集合
4,求f(x)在区间[-π/6,π/2]上的最大值和最小值.
▼优质解答
答案和解析
f(x)=2sin(π-x)cosx=2sinxcosx=sin(2x)x∈[-π/6,π/2]
1.f(x)的初相为0,对称轴为π/2+kπ,对称中心为(kπ,0)
2.由-π/2+2kπ≤2x≤π/2+2kπ,得-π/4+kπ≤x≤π/4+kπ(k∈z)
3.最大值为1,由2x=π/2+2kπ,得x=π/4+kπ,所以对应的x集合为{x|x=π/4+kπ,(k∈z)}
最小值为-1,由2x=-π/2+2kπ,得x=-π/4+kπ,所以对应的x集合为{x|x=-π/4+kπ,(k∈z)}
4.x∈[-π/6,π/2],2x∈[-π/3,π],所以-√3/2≤sin(2x)≤1,所以
f(x)在区间[-π/6,π/2]上的最大值为1,最小值为-√3/2
1.f(x)的初相为0,对称轴为π/2+kπ,对称中心为(kπ,0)
2.由-π/2+2kπ≤2x≤π/2+2kπ,得-π/4+kπ≤x≤π/4+kπ(k∈z)
3.最大值为1,由2x=π/2+2kπ,得x=π/4+kπ,所以对应的x集合为{x|x=π/4+kπ,(k∈z)}
最小值为-1,由2x=-π/2+2kπ,得x=-π/4+kπ,所以对应的x集合为{x|x=-π/4+kπ,(k∈z)}
4.x∈[-π/6,π/2],2x∈[-π/3,π],所以-√3/2≤sin(2x)≤1,所以
f(x)在区间[-π/6,π/2]上的最大值为1,最小值为-√3/2
看了 已知函数f(x)=2sin(...的网友还看了以下:
设在地球上和在x天体上,以相同的初速度竖直上抛一物体,物体上升的最大高度比为K,且已知地球和x天体 2020-04-09 …
函数单调性以及单调区间怎么求啊?f(x)=1/(1+x^2)在区间(0,1)上的单调性f(x)=x 2020-04-27 …
设函数f(x)在(-∞,+∞)内可导,且恒有f′(x)>0,则下列结论正确的是()A.f(x)在R 2020-05-13 …
单调增和严格的单调增问题单调函数中Y=2x(0≤x≤2)4(2≤x≤4)2x(4≤x6)那可以说这 2020-05-17 …
如何证明单峰函数?设f(x)是定义在[0,1]上的函数,若存在x*∈(0,1),使得f(x)在[0 2020-07-30 …
关于函数y=1/x-1的单调性的正确说法是A.是单调减函数B.在(-∞,0)和(0,+∞)上是单调 2020-08-01 …
已知a,b是实数,函数f(x)=x3+ax,g(x)=x2+bx,f′(x)和g′(x)分别是f( 2020-08-01 …
已知a,b是实数,函数f(x)=x3+ax,g(x)=x2+bx,f′(x)和g′(x)是f(x) 2020-08-01 …
函数y=2|x-3|在a,a+1上为单调函数,则a的取值范围若奇函数f(x)与偶函数g(x)之和为 2020-08-02 …
1.函数f(x)=2x*x-3│x│的单调减区间是什么?2.设y=f(x)再R上为单调函数,则方程 2020-08-02 …