早教吧作业答案频道 -->数学-->
在平面直角坐标系中,直线y=-35x+3与x轴、y轴相交于B、C两点,动点D在线段OB上,将线段DC绕着点D顺时针旋转90°得到DE,过点E作直线l⊥x轴于H,过点C作CF⊥y轴,交直线l于F,设点D的横坐标为m
题目详情
在平面直角坐标系中,直线y=-
x+3与x轴、y轴相交于B、C两点,动点D在线段OB上,将线段DC绕着点D顺时针旋转90°得到DE,过点E作直线l⊥x轴于H,过点C作CF⊥y轴,交直线l于F,设点D的横坐标为m.
(1)请直接写出点B、C的坐标;
(2)当点E落在直线BC上时,求tan∠FDE的值;
(3)对于常数m,探究:在直线l上是否存在点G,使得∠CDO=∠DFE+∠DGH?若存在,请求出点G的坐标;若不存在,请说明理由.
3 |
5 |
(1)请直接写出点B、C的坐标;
(2)当点E落在直线BC上时,求tan∠FDE的值;
(3)对于常数m,探究:在直线l上是否存在点G,使得∠CDO=∠DFE+∠DGH?若存在,请求出点G的坐标;若不存在,请说明理由.
▼优质解答
答案和解析
(1)∵直线y=-
x+3与x轴、y轴相交于B、C两点,
∴令y=0,则0=-
x+3,解得x=5,令x=0,则y=3,
∴B(5,0),C(0,3);
(2)如图1,∵∠CDE=90°,
∴∠CDO+∠EDH=90°,
∵∠CDO+∠OCD=90°,
∴∠OCD=∠EDH,
在△OCD和△HDE中,
,
∴△OCD≌△HDE(AAS),
∴DH=OC=3,
∵直线l⊥x轴于H,CF⊥y轴,
∴四边形COHF是矩形,
∴FH=OC=3,
∴DH=HF,
∴∠HDF=45°,即∠HDE+∠FDE=45°,
∵CD=DE,∠CDE=90°,
∴∠DCE=45°,
∴∠OCD+∠ECF=45°,
∴∠ECF=∠FDE,
∵∠OBC=∠ECF,
∵tan∠OBC=
=
,
∴tan∠FDE=
.
(3)如图2,由(2)可知△OCD≌△HDE,
∴∠CDO=∠DEH,
要使∠CDO=∠DFE+∠DGH,只要∠DEH=∠DFE+∠DGH,
在△DEF中,∠DEH=∠EDF+∠DFE,
∴只要∠EDF=∠DGF,
∵∠FED=∠GED,
只要△EDF∽△EGD,
∴只要
=
,即DE2=EF•EG,
由(2)可知:DE2=CD2=OD2+OC2=m2+32,EF=3-m,
∴当0<m<3时,EG=
+m=
,HO=3+m,
此时,G(3+m,
),
根据对称可知,当0<m<3时,此时还存在G′(3+m,-
);
当m=3时,此时点E和点F重合,∠DFE不存在,
当3≤m≤5时,点E在F的上方,此时,∠DFE>∠DEF,
此时不存在∠CDO=∠DFE+∠DGH,
综上,当0<m<3时,存在∠CDO=∠DFE+∠DGH,此时G(3+m,
)或(3+m,-
).
3 |
5 |
∴令y=0,则0=-
3 |
5 |
∴B(5,0),C(0,3);
(2)如图1,∵∠CDE=90°,
∴∠CDO+∠EDH=90°,
∵∠CDO+∠OCD=90°,
∴∠OCD=∠EDH,
在△OCD和△HDE中,
|
∴△OCD≌△HDE(AAS),
∴DH=OC=3,
∵直线l⊥x轴于H,CF⊥y轴,
∴四边形COHF是矩形,
∴FH=OC=3,
∴DH=HF,
∴∠HDF=45°,即∠HDE+∠FDE=45°,
∵CD=DE,∠CDE=90°,
∴∠DCE=45°,
∴∠OCD+∠ECF=45°,
∴∠ECF=∠FDE,
∵∠OBC=∠ECF,
∵tan∠OBC=
OC |
OB |
3 |
5 |
∴tan∠FDE=
3 |
5 |
(3)如图2,由(2)可知△OCD≌△HDE,
∴∠CDO=∠DEH,
要使∠CDO=∠DFE+∠DGH,只要∠DEH=∠DFE+∠DGH,
在△DEF中,∠DEH=∠EDF+∠DFE,
∴只要∠EDF=∠DGF,
∵∠FED=∠GED,
只要△EDF∽△EGD,
∴只要
EF |
DE |
DE |
EG |
由(2)可知:DE2=CD2=OD2+OC2=m2+32,EF=3-m,
∴当0<m<3时,EG=
m2+9 |
3-m |
9+3m |
3-m |
此时,G(3+m,
9+3m |
3-m |
根据对称可知,当0<m<3时,此时还存在G′(3+m,-
9+3m |
3-m |
当m=3时,此时点E和点F重合,∠DFE不存在,
当3≤m≤5时,点E在F的上方,此时,∠DFE>∠DEF,
此时不存在∠CDO=∠DFE+∠DGH,
综上,当0<m<3时,存在∠CDO=∠DFE+∠DGH,此时G(3+m,
9+3m |
3-m |
9+3m |
3-m |
看了 在平面直角坐标系中,直线y=...的网友还看了以下:
D是线段AB的中点,C是线段AB的中垂线上一点,DE垂直AC于E,DF垂直BC于F.点C运动到什么 2020-04-27 …
已知线段AB=8cm,点C是线段AB上任意一点,点M,N分别是线段AC与线段BC的中点,求线段MN 2020-05-13 …
正方体ABCD-A'B'C'D'中,点P在侧面BCC'B'及其边上运动,并且总是保持AP⊥BD', 2020-05-16 …
义务教育阶段营养改善计划实施范围为()A.小学段B.初中段C.高中段D.农村义务段学生全覆盖 2020-05-31 …
在直角坐标系中,已知点A(0,2),点B(-2,0)过点B和线段OA的中点C作直线BC,以线段BC 2020-06-14 …
在直角坐标系内描出A(2,0),B(4,0),C(-1,0),D(3,0).(1)分别求出线段AB 2020-06-25 …
下列关于中国书法艺术发展的表述,不正确的是[]A.自从有了文字,就有了书法B.中国书法艺术在唐朝之 2020-07-11 …
⒈点C在线段AB上,线段AC=6cmBC=4cm,点M,N分别是AC,BC中点,求线段MN的长度. 2020-07-30 …
如图为两频率相同的横波在传播过程中某时刻叠加情况的俯视图,两列波的振幅都为10cm,质点沿竖直方向 2020-08-01 …
如图,已知:A(-2,-3),C(0,-1),B点与A点关于C点中心对称,抛物线y=ax2+bx+c 2020-11-04 …