早教吧作业答案频道 -->数学-->
如图,平面直角坐标系中点A(4,3),AB⊥x轴,AC⊥y轴,点B、C为垂足,直线y=-x+k分别与x轴、y轴、AB、AC交于点E、G、H(G、H与A不重合).(1)当k=5时,求△BEG与△CHF的面积比;(2)当△OEH
题目详情
如图,平面直角坐标系中点A(4,3),AB⊥x轴,AC⊥y轴,点B、C为垂足,直线y=-x+k分别与x轴、y轴、AB、AC交于点E、G、H(G、H与A不重合).
(1)当k=5时,求△BEG与△CHF的面积比;
(2)当△OEH与△OFG相似时,求直线y=-x+k所表示的一次函数的解析式.
(1)当k=5时,求△BEG与△CHF的面积比;
(2)当△OEH与△OFG相似时,求直线y=-x+k所表示的一次函数的解析式.
▼优质解答
答案和解析
(1)∵AB∥OF,
∴△BEG∽△OEF,
同理,△△OEF∽△CHF,
∴△BEG∽△CHF,
∵y=-x+k,与x轴的交点是(k,0),与y轴的交点是(0,k),
∴△OEF是等腰直角三角形,
∴△BEG和△CHF都是等腰直角三角形.
则CF=CH=k-3,BE=BG=k-4,
当k=5时,CF=2,BG=1,
∴△BEG与△CHF的面积比=(1:2)2=1:4;
(2)△OEH与△OFG相似,则一定有:△OEH∽△GFO,
∴
=
,
∵△BEG和△CHF都是等腰直角三角形,且CF=CH=k-3,BE=BG=k-4,
∴FH=
(k-3),GE=
(k-4),EF=
k,
∴FG=
k-
(k-4)=4
,EH=
k-
∴△BEG∽△OEF,
同理,△△OEF∽△CHF,
∴△BEG∽△CHF,
∵y=-x+k,与x轴的交点是(k,0),与y轴的交点是(0,k),
∴△OEF是等腰直角三角形,
∴△BEG和△CHF都是等腰直角三角形.
则CF=CH=k-3,BE=BG=k-4,
当k=5时,CF=2,BG=1,
∴△BEG与△CHF的面积比=(1:2)2=1:4;
(2)△OEH与△OFG相似,则一定有:△OEH∽△GFO,
∴
OE |
GF |
EH |
OF |
∵△BEG和△CHF都是等腰直角三角形,且CF=CH=k-3,BE=BG=k-4,
∴FH=
2 |
2 |
2 |
∴FG=
2 |
2 |
2 |
2 |
作业帮用户
2016-11-18
|
看了 如图,平面直角坐标系中点A(...的网友还看了以下:
二次函数y=ax²+bx+c用配方法可化成:y=a(x-h)²+k的形式,其中h=-2a分之b,k 2020-05-15 …
对于任意实数h,抛物线y=(x-h)^2与抛物线y=x^2哪个正确?1,对称轴相同2,开口相反3. 2020-05-23 …
如图,平面直角坐标系中,抛物线y=-13(x+h)2+k的对称轴为x=-1,与y轴交于点D(0,1 2020-07-17 …
(2013•台州)如图1,已知直线l:y=-x+2与y轴交于点A,抛物线y=(x-1)2+k经过点 2020-07-20 …
求由曲线y=(r/h)*x及直线x=0,x=h(h>0)和x轴所围成的三角形绕x轴旋转而生成的立体 2020-08-02 …
f(x)=x^2+bx+c的对称轴为3/2且经过点(0,3),函数h(x)=e^x,定义函数F(X) 2020-11-19 …
如图1,已知直线l:y=-x+2与y轴交于点A,抛物线y=(x-1)2+k经过点A,其顶点为B,另一 2020-11-27 …
已知点M(-8,0),点P,Q分别在x,y轴上滑动,且,若点N为线段PQ的中点.(1)求动点N的轨迹 2020-11-27 …
如图,边长为1的正方形ABCD一边AD在x负半轴上,直线l:y=12x+2经过点B(x,1)与x轴, 2020-11-30 …
急,关于三角函数y=acot[k(x+h)]+c的问题如何求函数中的k值,还有周期,a值.举个例子, 2021-02-14 …